File size: 23,875 Bytes
53d77b0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
#!/usr/bin/env python
# coding: utf-8

# In[ ]:


import os
import threading
import time
import urllib.parse
from os import PathLike
from pathlib import Path
from typing import List, NamedTuple, Optional, Tuple

import numpy as np
from openvino.runtime import Core, Type, get_version
from IPython.display import HTML, Image, display

import openvino as ov
from openvino.runtime.passes import Manager, MatcherPass, WrapType, Matcher
from openvino.runtime import opset10 as ops


# ## Files
#
# Load an image, download a file, download an IR model, and create a progress bar to show download progress.

# In[ ]:


def load_image(path: str) -> np.ndarray:
    """

    Loads an image from `path` and returns it as BGR numpy array. `path`

    should point to an image file, either a local filename or a url. The image is

    not stored to the filesystem. Use the `download_file` function to download and

    store an image.



    :param path: Local path name or URL to image.

    :return: image as BGR numpy array

    """
    import cv2
    import requests

    if path.startswith("http"):
        # Set User-Agent to Mozilla because some websites block
        # requests with User-Agent Python
        response = requests.get(path, headers={"User-Agent": "Mozilla/5.0"})
        array = np.asarray(bytearray(response.content), dtype="uint8")
        image = cv2.imdecode(array, -1)  # Loads the image as BGR
    else:
        image = cv2.imread(path)
    return image


def download_file(

    url: PathLike,

    filename: PathLike = None,

    directory: PathLike = None,

    show_progress: bool = True,

    silent: bool = False,

    timeout: int = 10,

) -> PathLike:
    """

    Download a file from a url and save it to the local filesystem. The file is saved to the

    current directory by default, or to `directory` if specified. If a filename is not given,

    the filename of the URL will be used.



    :param url: URL that points to the file to download

    :param filename: Name of the local file to save. Should point to the name of the file only,

                     not the full path. If None the filename from the url will be used

    :param directory: Directory to save the file to. Will be created if it doesn't exist

                      If None the file will be saved to the current working directory

    :param show_progress: If True, show an TQDM ProgressBar

    :param silent: If True, do not print a message if the file already exists

    :param timeout: Number of seconds before cancelling the connection attempt

    :return: path to downloaded file

    """
    from tqdm.notebook import tqdm_notebook
    import requests

    filename = filename or Path(urllib.parse.urlparse(url).path).name
    chunk_size = 16384  # make chunks bigger so that not too many updates are triggered for Jupyter front-end

    filename = Path(filename)
    if len(filename.parts) > 1:
        raise ValueError(
            "`filename` should refer to the name of the file, excluding the directory. "
            "Use the `directory` parameter to specify a target directory for the downloaded file."
        )

    # create the directory if it does not exist, and add the directory to the filename
    if directory is not None:
        directory = Path(directory)
        directory.mkdir(parents=True, exist_ok=True)
        filename = directory / Path(filename)

    try:
        response = requests.get(url=url, headers={"User-agent": "Mozilla/5.0"}, stream=True)
        response.raise_for_status()
    except (
        requests.exceptions.HTTPError
    ) as error:  # For error associated with not-200 codes. Will output something like: "404 Client Error: Not Found for url: {url}"
        raise Exception(error) from None
    except requests.exceptions.Timeout:
        raise Exception(
            "Connection timed out. If you access the internet through a proxy server, please "
            "make sure the proxy is set in the shell from where you launched Jupyter."
        ) from None
    except requests.exceptions.RequestException as error:
        raise Exception(f"File downloading failed with error: {error}") from None

    # download the file if it does not exist, or if it exists with an incorrect file size
    filesize = int(response.headers.get("Content-length", 0))
    if not filename.exists() or (os.stat(filename).st_size != filesize):
        with tqdm_notebook(
            total=filesize,
            unit="B",
            unit_scale=True,
            unit_divisor=1024,
            desc=str(filename),
            disable=not show_progress,
        ) as progress_bar:
            with open(filename, "wb") as file_object:
                for chunk in response.iter_content(chunk_size):
                    file_object.write(chunk)
                    progress_bar.update(len(chunk))
                    progress_bar.refresh()
    else:
        if not silent:
            print(f"'{filename}' already exists.")

    response.close()

    return filename.resolve()


def download_ir_model(model_xml_url: str, destination_folder: PathLike = None) -> PathLike:
    """

    Download IR model from `model_xml_url`. Downloads model xml and bin file; the weights file is

    assumed to exist at the same location and name as model_xml_url with a ".bin" extension.



    :param model_xml_url: URL to model xml file to download

    :param destination_folder: Directory where downloaded model xml and bin are saved. If None, model

                               files are saved to the current directory

    :return: path to downloaded xml model file

    """
    model_bin_url = model_xml_url[:-4] + ".bin"
    model_xml_path = download_file(model_xml_url, directory=destination_folder, show_progress=False)
    download_file(model_bin_url, directory=destination_folder)
    return model_xml_path


# ## Images

# ### Convert Pixel Data
#
# Normalize image pixel values between 0 and 1, and convert images to RGB and BGR.

# In[ ]:


def normalize_minmax(data):
    """

    Normalizes the values in `data` between 0 and 1

    """
    if data.max() == data.min():
        raise ValueError("Normalization is not possible because all elements of" f"`data` have the same value: {data.max()}.")
    return (data - data.min()) / (data.max() - data.min())


def to_rgb(image_data: np.ndarray) -> np.ndarray:
    """

    Convert image_data from BGR to RGB

    """
    import cv2

    return cv2.cvtColor(image_data, cv2.COLOR_BGR2RGB)


def to_bgr(image_data: np.ndarray) -> np.ndarray:
    """

    Convert image_data from RGB to BGR

    """
    import cv2

    return cv2.cvtColor(image_data, cv2.COLOR_RGB2BGR)


# ## Videos

# ### Video Player
#
# Custom video player to fulfill FPS requirements. You can set target FPS and output size, flip the video horizontally or skip first N frames.

# In[ ]:


class VideoPlayer:
    """

    Custom video player to fulfill FPS requirements. You can set target FPS and output size,

    flip the video horizontally or skip first N frames.



    :param source: Video source. It could be either camera device or video file.

    :param size: Output frame size.

    :param flip: Flip source horizontally.

    :param fps: Target FPS.

    :param skip_first_frames: Skip first N frames.

    """

    def __init__(self, source, size=None, flip=False, fps=None, skip_first_frames=0):
        import cv2

        self.cv2 = cv2  # This is done to access the package in class methods
        self.__cap = cv2.VideoCapture(source)
        if not self.__cap.isOpened():
            raise RuntimeError(f"Cannot open {'camera' if isinstance(source, int) else ''} {source}")
        # skip first N frames
        self.__cap.set(cv2.CAP_PROP_POS_FRAMES, skip_first_frames)
        # fps of input file
        self.__input_fps = self.__cap.get(cv2.CAP_PROP_FPS)
        if self.__input_fps <= 0:
            self.__input_fps = 60
        # target fps given by user
        self.__output_fps = fps if fps is not None else self.__input_fps
        self.__flip = flip
        self.__size = None
        self.__interpolation = None
        if size is not None:
            self.__size = size
            # AREA better for shrinking, LINEAR better for enlarging
            self.__interpolation = cv2.INTER_AREA if size[0] < self.__cap.get(cv2.CAP_PROP_FRAME_WIDTH) else cv2.INTER_LINEAR
        # first frame
        _, self.__frame = self.__cap.read()
        self.__lock = threading.Lock()
        self.__thread = None
        self.__stop = False

    """

    Start playing.

    """

    def start(self):
        self.__stop = False
        self.__thread = threading.Thread(target=self.__run, daemon=True)
        self.__thread.start()

    """

    Stop playing and release resources.

    """

    def stop(self):
        self.__stop = True
        if self.__thread is not None:
            self.__thread.join()
        self.__cap.release()

    def __run(self):
        prev_time = 0
        while not self.__stop:
            t1 = time.time()
            ret, frame = self.__cap.read()
            if not ret:
                break

            # fulfill target fps
            if 1 / self.__output_fps < time.time() - prev_time:
                prev_time = time.time()
                # replace by current frame
                with self.__lock:
                    self.__frame = frame

            t2 = time.time()
            # time to wait [s] to fulfill input fps
            wait_time = 1 / self.__input_fps - (t2 - t1)
            # wait until
            time.sleep(max(0, wait_time))

        self.__frame = None

    """

    Get current frame.

    """

    def next(self):
        import cv2

        with self.__lock:
            if self.__frame is None:
                return None
            # need to copy frame, because can be cached and reused if fps is low
            frame = self.__frame.copy()
        if self.__size is not None:
            frame = self.cv2.resize(frame, self.__size, interpolation=self.__interpolation)
        if self.__flip:
            frame = self.cv2.flip(frame, 1)
        return frame


# ## Visualization

# ### Segmentation
#
# Define a SegmentationMap NamedTuple that keeps the labels and colormap for a segmentation project/dataset. Create CityScapesSegmentation and BinarySegmentation SegmentationMaps. Create a function to convert a segmentation map to an RGB image with a colormap, and to show the segmentation result as an overlay over the original image.

# In[ ]:


class Label(NamedTuple):
    index: int
    color: Tuple
    name: Optional[str] = None


# In[ ]:


class SegmentationMap(NamedTuple):
    labels: List

    def get_colormap(self):
        return np.array([label.color for label in self.labels])

    def get_labels(self):
        labelnames = [label.name for label in self.labels]
        if any(labelnames):
            return labelnames
        else:
            return None


# In[ ]:


cityscape_labels = [
    Label(index=0, color=(128, 64, 128), name="road"),
    Label(index=1, color=(244, 35, 232), name="sidewalk"),
    Label(index=2, color=(70, 70, 70), name="building"),
    Label(index=3, color=(102, 102, 156), name="wall"),
    Label(index=4, color=(190, 153, 153), name="fence"),
    Label(index=5, color=(153, 153, 153), name="pole"),
    Label(index=6, color=(250, 170, 30), name="traffic light"),
    Label(index=7, color=(220, 220, 0), name="traffic sign"),
    Label(index=8, color=(107, 142, 35), name="vegetation"),
    Label(index=9, color=(152, 251, 152), name="terrain"),
    Label(index=10, color=(70, 130, 180), name="sky"),
    Label(index=11, color=(220, 20, 60), name="person"),
    Label(index=12, color=(255, 0, 0), name="rider"),
    Label(index=13, color=(0, 0, 142), name="car"),
    Label(index=14, color=(0, 0, 70), name="truck"),
    Label(index=15, color=(0, 60, 100), name="bus"),
    Label(index=16, color=(0, 80, 100), name="train"),
    Label(index=17, color=(0, 0, 230), name="motorcycle"),
    Label(index=18, color=(119, 11, 32), name="bicycle"),
    Label(index=19, color=(255, 255, 255), name="background"),
]

CityScapesSegmentation = SegmentationMap(cityscape_labels)

binary_labels = [
    Label(index=0, color=(255, 255, 255), name="background"),
    Label(index=1, color=(0, 0, 0), name="foreground"),
]

BinarySegmentation = SegmentationMap(binary_labels)


# In[ ]:


def segmentation_map_to_image(result: np.ndarray, colormap: np.ndarray, remove_holes: bool = False) -> np.ndarray:
    """

    Convert network result of floating point numbers to an RGB image with

    integer values from 0-255 by applying a colormap.



    :param result: A single network result after converting to pixel values in H,W or 1,H,W shape.

    :param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.

    :param remove_holes: If True, remove holes in the segmentation result.

    :return: An RGB image where each pixel is an int8 value according to colormap.

    """
    import cv2

    if len(result.shape) != 2 and result.shape[0] != 1:
        raise ValueError(f"Expected result with shape (H,W) or (1,H,W), got result with shape {result.shape}")

    if len(np.unique(result)) > colormap.shape[0]:
        raise ValueError(
            f"Expected max {colormap[0]} classes in result, got {len(np.unique(result))} "
            "different output values. Please make sure to convert the network output to "
            "pixel values before calling this function."
        )
    elif result.shape[0] == 1:
        result = result.squeeze(0)

    result = result.astype(np.uint8)

    contour_mode = cv2.RETR_EXTERNAL if remove_holes else cv2.RETR_TREE
    mask = np.zeros((result.shape[0], result.shape[1], 3), dtype=np.uint8)
    for label_index, color in enumerate(colormap):
        label_index_map = result == label_index
        label_index_map = label_index_map.astype(np.uint8) * 255
        contours, hierarchies = cv2.findContours(label_index_map, contour_mode, cv2.CHAIN_APPROX_SIMPLE)
        cv2.drawContours(
            mask,
            contours,
            contourIdx=-1,
            color=color.tolist(),
            thickness=cv2.FILLED,
        )

    return mask


def segmentation_map_to_overlay(image, result, alpha, colormap, remove_holes=False) -> np.ndarray:
    """

    Returns a new image where a segmentation mask (created with colormap) is overlayed on

    the source image.



    :param image: Source image.

    :param result: A single network result after converting to pixel values in H,W or 1,H,W shape.

    :param alpha: Alpha transparency value for the overlay image.

    :param colormap: A numpy array of shape (num_classes, 3) with an RGB value per class.

    :param remove_holes: If True, remove holes in the segmentation result.

    :return: An RGP image with segmentation mask overlayed on the source image.

    """
    import cv2

    if len(image.shape) == 2:
        image = np.repeat(np.expand_dims(image, -1), 3, 2)
    mask = segmentation_map_to_image(result, colormap, remove_holes)
    image_height, image_width = image.shape[:2]
    mask = cv2.resize(src=mask, dsize=(image_width, image_height))
    return cv2.addWeighted(mask, alpha, image, 1 - alpha, 0)


# ### Network Results
#
# Show network result image, optionally together with the source image and a legend with labels.

# In[ ]:


def viz_result_image(

    result_image: np.ndarray,

    source_image: np.ndarray = None,

    source_title: str = None,

    result_title: str = None,

    labels: List[Label] = None,

    resize: bool = False,

    bgr_to_rgb: bool = False,

    hide_axes: bool = False,

):
    """

    Show result image, optionally together with source images, and a legend with labels.



    :param result_image: Numpy array of RGB result image.

    :param source_image: Numpy array of source image. If provided this image will be shown

                         next to the result image. source_image is expected to be in RGB format.

                         Set bgr_to_rgb to True if source_image is in BGR format.

    :param source_title: Title to display for the source image.

    :param result_title: Title to display for the result image.

    :param labels: List of labels. If provided, a legend will be shown with the given labels.

    :param resize: If true, resize the result image to the same shape as the source image.

    :param bgr_to_rgb: If true, convert the source image from BGR to RGB. Use this option if

                       source_image is a BGR image.

    :param hide_axes: If true, do not show matplotlib axes.

    :return: Matplotlib figure with result image

    """
    import cv2
    import matplotlib.pyplot as plt
    from matplotlib.lines import Line2D

    if bgr_to_rgb:
        source_image = to_rgb(source_image)
    if resize:
        result_image = cv2.resize(result_image, (source_image.shape[1], source_image.shape[0]))

    num_images = 1 if source_image is None else 2

    fig, ax = plt.subplots(1, num_images, figsize=(16, 8), squeeze=False)
    if source_image is not None:
        ax[0, 0].imshow(source_image)
        ax[0, 0].set_title(source_title)

    ax[0, num_images - 1].imshow(result_image)
    ax[0, num_images - 1].set_title(result_title)

    if hide_axes:
        for a in ax.ravel():
            a.axis("off")
    if labels:
        colors = labels.get_colormap()
        lines = [
            Line2D(
                [0],
                [0],
                color=[item / 255 for item in c.tolist()],
                linewidth=3,
                linestyle="-",
            )
            for c in colors
        ]
        plt.legend(
            lines,
            labels.get_labels(),
            bbox_to_anchor=(1, 1),
            loc="upper left",
            prop={"size": 12},
        )
    plt.close(fig)
    return fig


# ### Live Inference

# In[ ]:


def show_array(frame: np.ndarray, display_handle=None):
    """

    Display array `frame`. Replace information at `display_handle` with `frame`

    encoded as jpeg image. `frame` is expected to have data in BGR order.



    Create a display_handle with: `display_handle = display(display_id=True)`

    """
    import cv2

    _, frame = cv2.imencode(ext=".jpeg", img=frame)
    if display_handle is None:
        display_handle = display(Image(data=frame.tobytes()), display_id=True)
    else:
        display_handle.update(Image(data=frame.tobytes()))
    return display_handle


# ## Checks and Alerts
#
# Create an alert class to show stylized info/error/warning messages and a `check_device` function that checks whether a given device is available.

# In[ ]:


class NotebookAlert(Exception):
    def __init__(self, message: str, alert_class: str):
        """

        Show an alert box with the given message.



        :param message: The message to display.

        :param alert_class: The class for styling the message. Options: info, warning, success, danger.

        """
        self.message = message
        self.alert_class = alert_class
        self.show_message()

    def show_message(self):
        display(HTML(f"""<div class="alert alert-{self.alert_class}">{self.message}"""))


class DeviceNotFoundAlert(NotebookAlert):
    def __init__(self, device: str):
        """

        Show a warning message about an unavailable device. This class does not check whether or

        not the device is available, use the `check_device` function to check this. `check_device`

        also shows the warning if the device is not found.



        :param device: The unavailable device.

        :return: A formatted alert box with the message that `device` is not available, and a list

                 of devices that are available.

        """
        ie = Core()
        supported_devices = ie.available_devices
        self.message = f"Running this cell requires a {device} device, " "which is not available on this system. "
        self.alert_class = "warning"
        if len(supported_devices) == 1:
            self.message += f"The following device is available: {ie.available_devices[0]}"
        else:
            self.message += "The following devices are available: " f"{', '.join(ie.available_devices)}"
        super().__init__(self.message, self.alert_class)


def check_device(device: str) -> bool:
    """

    Check if the specified device is available on the system.



    :param device: Device to check. e.g. CPU, GPU

    :return: True if the device is available, False if not. If the device is not available,

             a DeviceNotFoundAlert will be shown.

    """
    ie = Core()
    if device not in ie.available_devices:
        DeviceNotFoundAlert(device)
        return False
    else:
        return True


def check_openvino_version(version: str) -> bool:
    """

    Check if the specified OpenVINO version is installed.



    :param version: the OpenVINO version to check. Example: 2021.4

    :return: True if the version is installed, False if not. If the version is not installed,

             an alert message will be shown.

    """
    installed_version = get_version()
    if version not in installed_version:
        NotebookAlert(
            f"This notebook requires OpenVINO {version}. "
            f"The version on your system is: <i>{installed_version}</i>.<br>"
            "Please run <span style='font-family:monospace'>pip install --upgrade -r requirements.txt</span> "
            "in the openvino_env environment to install this version. "
            "See the <a href='https://github.com/openvinotoolkit/openvino_notebooks'>"
            "OpenVINO Notebooks README</a> for detailed instructions",
            alert_class="danger",
        )
        return False
    else:
        return True


packed_layername_tensor_dict_list = [{"name": "aten::mul/Multiply"}]


class ReplaceTensor(MatcherPass):
    def __init__(self, packed_layername_tensor_dict_list):
        MatcherPass.__init__(self)
        self.model_changed = False

        param = WrapType("opset10.Multiply")

        def callback(matcher: Matcher) -> bool:
            root = matcher.get_match_root()
            if root is None:
                return False
            for y in packed_layername_tensor_dict_list:
                root_name = root.get_friendly_name()
                if root_name.find(y["name"]) != -1:
                    max_fp16 = np.array([[[[-np.finfo(np.float16).max]]]]).astype(np.float32)
                    new_tenser = ops.constant(max_fp16, Type.f32, name="Constant_4431")
                    root.set_arguments([root.input_value(0).node, new_tenser])
                    packed_layername_tensor_dict_list.remove(y)

            return True

        self.register_matcher(Matcher(param, "ReplaceTensor"), callback)


def optimize_bge_embedding(model_path, output_model_path):
    """

    optimize_bge_embedding used to optimize BGE model for NPU device



    Arguments:

        model_path {str} -- original BGE IR model path

        output_model_path {str} -- Converted BGE IR model path

    """
    core = Core()
    ov_model = core.read_model(model_path)
    manager = Manager()
    manager.register_pass(ReplaceTensor(packed_layername_tensor_dict_list))
    manager.run_passes(ov_model)
    ov.save_model(ov_model, output_model_path, compress_to_fp16=False)