Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
from dataclasses import dataclass | |
import glob | |
import json | |
from typing import Dict, List, Tuple | |
from src.utils_display import AutoEvalColumn, make_clickable_model | |
import numpy as np | |
METRICS = ["acc_norm", "acc_norm", "acc", "mc2"] | |
BENCHMARKS = ["arc:challenge", "hellaswag", "hendrycksTest", "truthfulqa:mc"] | |
BENCH_TO_NAME = { | |
"arc:challenge": AutoEvalColumn.arc.name, | |
"hellaswag": AutoEvalColumn.hellaswag.name, | |
"hendrycksTest": AutoEvalColumn.mmlu.name, | |
"truthfulqa:mc": AutoEvalColumn.truthfulqa.name, | |
} | |
class EvalResult: | |
eval_name: str | |
org: str | |
model: str | |
revision: str | |
results: dict | |
is_8bit: bool = False | |
def to_dict(self): | |
if self.org is not None: | |
base_model = f"{self.org}/{self.model}" | |
else: | |
base_model = f"{self.model}" | |
data_dict = {} | |
data_dict["eval_name"] = self.eval_name # not a column, just a save name | |
data_dict[AutoEvalColumn.is_8bit.name] = self.is_8bit | |
data_dict[AutoEvalColumn.model.name] = make_clickable_model(base_model) | |
data_dict[AutoEvalColumn.dummy.name] = base_model | |
data_dict[AutoEvalColumn.revision.name] = self.revision | |
data_dict[AutoEvalColumn.average.name] = round( | |
sum([v for k, v in self.results.items()]) / 4.0, 1 | |
) | |
for benchmark in BENCHMARKS: | |
if benchmark not in self.results.keys(): | |
self.results[benchmark] = None | |
for k, v in BENCH_TO_NAME.items(): | |
data_dict[v] = self.results[k] | |
return data_dict | |
def parse_eval_result(json_filepath: str) -> Tuple[str, list[dict]]: | |
with open(json_filepath) as fp: | |
data = json.load(fp) | |
config = data["config"] | |
model = config.get("model_name", None) | |
if model is None: | |
model = config.get("model_args", None) | |
model_sha = config.get("model_sha", "") | |
eval_sha = config.get("lighteval_sha", "") | |
model_split = model.split("/", 1) | |
model = model_split[-1] | |
if len(model_split) == 1: | |
org = None | |
model = model_split[0] | |
result_key = f"{model}_{model_sha}_{eval_sha}" | |
else: | |
org = model_split[0] | |
model = model_split[1] | |
result_key = f"{org}_{model}_{model_sha}_{eval_sha}" | |
eval_results = [] | |
for benchmark, metric in zip(BENCHMARKS, METRICS): | |
accs = np.array([v[metric] for k, v in data["results"].items() if benchmark in k]) | |
if accs.size == 0: | |
continue | |
mean_acc = round(np.mean(accs) * 100.0, 1) | |
eval_results.append(EvalResult( | |
result_key, org, model, model_sha, {benchmark: mean_acc} | |
)) | |
return result_key, eval_results | |
def get_eval_results(is_public) -> List[EvalResult]: | |
json_filepaths = glob.glob( | |
"eval-results/**/results*.json", recursive=True | |
) | |
if not is_public: | |
json_filepaths += glob.glob( | |
"private-eval-results/**/results*.json", recursive=True | |
) | |
eval_results = {} | |
for json_filepath in json_filepaths: | |
result_key, results = parse_eval_result(json_filepath) | |
for eval_result in results: | |
if result_key in eval_results.keys(): | |
eval_results[result_key].results.update(eval_result.results) | |
else: | |
eval_results[result_key] = eval_result | |
eval_results = [v for v in eval_results.values()] | |
return eval_results | |
def get_eval_results_dicts(is_public=True) -> List[Dict]: | |
eval_results = get_eval_results(is_public) | |
return [e.to_dict() for e in eval_results] | |