import os from threading import Thread from typing import Iterator import gradio as gr # Importing Gradio for creating UI interfaces. import spaces # Import for using Hugging Face Spaces functionalities. import torch # PyTorch library for deep learning applications. from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer # Import necessary components from Hugging Face's Transformers. # Constants for maximum token lengths and defaults. MAX_MAX_NEW_TOKENS = 2048 DEFAULT_MAX_NEW_TOKENS = 1024 MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096")) # Initial description for the UI interface, showcasing the AI version and creator. DESCRIPTION = """\ # Masher AI v6 7B This Space demonstrates Masher AI v6 7B by Maheswar. """ # Check for GPU availability, append a warning to the description if running on CPU. if not torch.cuda.is_available(): DESCRIPTION += "\n

Running on CPU! This demo does not work on CPU.

" # If a GPU is available, load the model and tokenizer with specific configurations. if torch.cuda.is_available(): model_id = "mahiatlinux/MasherAI-v6-7B" model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True) tokenizer = AutoTokenizer.from_pretrained(model_id) tokenizer.use_default_system_prompt = False # Define a function decorated to use GPU and enable queue for processing the generation tasks. @spaces.GPU(enable_queue=False) def generate( message: str, chat_history: list[tuple[str, str]], system_prompt: str, max_new_tokens: int = 1024, temperature: float = 0.1, top_p: float = 0.9, top_k: int = 50, repetition_penalty: float = 1.2, ) -> Iterator[str]: # Preparing conversation history for processing. conversation = [] # Adding system prompt. # conversation.append({"from": "human", "value": system_prompt}) # Extending the conversation history with user and assistant interactions. for user, assistant in chat_history: conversation.extend([{"from": "human", "value": user}, {"from": "gpt", "value": assistant}]) # Adding the latest message from the user to the conversation. conversation.append({"from": "human", "value": message}) # Tokenize and prepare the input, handle exceeding token lengths. input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt", add_generation_prompt=True) if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH: input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:] gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.") input_ids = input_ids.to(model.device) # Setup for asynchronous text generation. streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) generate_kwargs = dict( {"input_ids": input_ids}, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, top_p=top_p, top_k=top_k, temperature=temperature, num_beams=1, repetition_penalty=repetition_penalty, ) t = Thread(target=model.generate, kwargs=generate_kwargs) t.start() # Collect and yield generated outputs as they become available. outputs = [] for text in streamer: outputs.append(text) yield "".join(outputs) # Setup Gradio interface for chat, including additional controls for the generation parameters. chat_interface = gr.ChatInterface( fn=generate, fill_height=True, additional_inputs=[ gr.Textbox(label="System prompt", lines=6), gr.Slider( label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS, ), gr.Slider( label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6, ), gr.Slider( label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9, ), gr.Slider( label="Top-k", minimum=1, maximum=1000, step=1, value=50, ), gr.Slider( label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2, ), ], stop_btn=None, examples=[ # Examples to assist users in starting conversations with the AI. ], ) chatbot=gr.Chatbot(height=450, label='Gradio ChatInterface') # Setup and launch the Gradio demo with Blocks API. with gr.Blocks(css="style.css", fill_height=True) as demo: gr.Markdown(DESCRIPTION) chat_interface.render() # Main entry point to start the web application if this script is run directly. if __name__ == "__main__": demo.queue(max_size=20).launch()