Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
f2a2662
1
Parent(s):
47f06c3
Temp commit
Browse files
utils.py
CHANGED
@@ -1,25 +1,23 @@
|
|
1 |
-
import os
|
2 |
-
import math
|
3 |
-
import time
|
4 |
-
import json
|
5 |
-
import wandb
|
6 |
-
import pickle
|
7 |
-
import datetime
|
8 |
import argparse
|
|
|
9 |
import functools
|
|
|
|
|
|
|
|
|
10 |
import traceback
|
|
|
|
|
11 |
|
12 |
-
import pandas as pd
|
13 |
-
import numpy as np
|
14 |
import bittensor as bt
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
from typing import Dict, List, Any, Optional, Tuple
|
19 |
from bittensor.extrinsics.serving import get_metadata
|
|
|
20 |
|
21 |
-
|
22 |
-
NETUID =
|
23 |
DELAY_SECS = 3
|
24 |
RETRIES = 3
|
25 |
|
@@ -27,18 +25,22 @@ load_dotenv()
|
|
27 |
|
28 |
WANDB_TOKEN = os.environ.get("WANDB_API_KEY", None)
|
29 |
SUBTENSOR_ENDPOINT = os.environ.get("SUBTENSOR_ENDPOINT", None)
|
30 |
-
VALIDATOR_WANDB_PROJECT = "
|
31 |
-
BENCHMARK_WANDB_PROJECT = "
|
32 |
BENCHMARK_FLAG = os.environ.get("BENCHMARK_FLAG", None)
|
33 |
|
34 |
-
|
|
|
35 |
class ModelData:
|
36 |
uid: int
|
37 |
hotkey: str
|
|
|
38 |
namespace: str
|
39 |
name: str
|
40 |
commit: str
|
41 |
-
|
|
|
|
|
42 |
block: int
|
43 |
incentive: float
|
44 |
emission: float
|
@@ -60,8 +62,9 @@ class ModelData:
|
|
60 |
hotkey=hotkey,
|
61 |
namespace=tokens[0],
|
62 |
name=tokens[1],
|
63 |
-
commit=tokens[2]
|
64 |
-
|
|
|
65 |
block=block,
|
66 |
incentive=incentive,
|
67 |
emission=emission,
|
@@ -69,6 +72,7 @@ class ModelData:
|
|
69 |
|
70 |
|
71 |
def run_with_retries(func, *args, **kwargs):
|
|
|
72 |
for i in range(0, RETRIES):
|
73 |
try:
|
74 |
return func(*args, **kwargs)
|
@@ -81,12 +85,18 @@ def run_with_retries(func, *args, **kwargs):
|
|
81 |
|
82 |
|
83 |
def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
|
|
|
84 |
|
85 |
def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
|
86 |
if SUBTENSOR_ENDPOINT:
|
87 |
parser = argparse.ArgumentParser()
|
88 |
bt.subtensor.add_args(parser)
|
89 |
-
subtensor = bt.subtensor(
|
|
|
|
|
|
|
|
|
|
|
90 |
else:
|
91 |
subtensor = bt.subtensor("finney")
|
92 |
|
@@ -235,7 +245,11 @@ def get_losses_over_time(wandb_runs: List) -> pd.DataFrame:
|
|
235 |
for _, uid_data in all_uid_data.items():
|
236 |
loss = uid_data.get("average_loss", math.inf)
|
237 |
# Filter out the numbers from the exploit and when validators lost the best model.
|
238 |
-
if
|
|
|
|
|
|
|
|
|
239 |
best_loss = uid_data["average_loss"]
|
240 |
if best_loss != math.inf:
|
241 |
timestamps.append(timestamp)
|
@@ -298,53 +312,67 @@ def get_benchmarks() -> Tuple[pd.DataFrame, datetime.datetime]:
|
|
298 |
if artifacts:
|
299 |
table = artifacts[-1].get("benchmarks")
|
300 |
if table:
|
301 |
-
return table.get_dataframe(), datetime.datetime.strptime(
|
|
|
|
|
302 |
bt.logging.error("Failed to get benchmarks from Wandb.")
|
303 |
return None, None
|
304 |
|
305 |
|
306 |
-
def make_validator_dataframe(
|
|
|
|
|
307 |
|
308 |
values = [
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
]
|
324 |
-
dtypes = {"UID":int, "Stake (τ)":float, "V-Trust":float}
|
325 |
-
dtypes.update({
|
326 |
f"{c.namespace}/{c.name} ({c.commit[0:8]})": float
|
327 |
for c in model_data
|
328 |
if c.incentive
|
329 |
-
}
|
|
|
330 |
return pd.DataFrame(values, columns=dtypes.keys()).astype(dtypes)
|
331 |
|
|
|
332 |
def make_metagraph_dataframe(metagraph: bt.metagraph, weights=False) -> pd.DataFrame:
|
333 |
|
334 |
-
cols = [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
335 |
|
336 |
frame = pd.DataFrame({k: getattr(metagraph, k) for k in cols})
|
337 |
-
frame[
|
338 |
-
frame[
|
339 |
-
frame[
|
340 |
-
frame[
|
341 |
-
frame[
|
342 |
if weights and metagraph.W is not None:
|
343 |
# convert NxN tensor to a list of lists so it fits into the dataframe
|
344 |
-
frame[
|
345 |
|
346 |
return frame
|
347 |
|
|
|
348 |
def load_state_vars() -> dict[Any]:
|
349 |
while True:
|
350 |
try:
|
@@ -355,8 +383,11 @@ def load_state_vars() -> dict[Any]:
|
|
355 |
model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
|
356 |
model_data.sort(key=lambda x: x.incentive, reverse=True)
|
357 |
|
358 |
-
bt.logging.success(f
|
359 |
-
vali_runs = get_wandb_runs(
|
|
|
|
|
|
|
360 |
|
361 |
scores = get_scores([x.uid for x in model_data], vali_runs)
|
362 |
|
@@ -385,40 +416,98 @@ def load_state_vars() -> dict[Any]:
|
|
385 |
time.sleep(30)
|
386 |
|
387 |
return {
|
388 |
-
|
389 |
"model_data": model_data,
|
390 |
"vali_runs": vali_runs,
|
391 |
"scores": scores,
|
392 |
"validator_df": validator_df,
|
393 |
"benchmarks": benchmarks,
|
394 |
-
"benchmark_timestamp": benchmark_timestamp
|
395 |
}
|
396 |
|
|
|
397 |
def test_load_state_vars():
|
398 |
|
399 |
subtensor = bt.subtensor("finney")
|
400 |
metagraph = subtensor.metagraph(NETUID, lite=True)
|
401 |
model_data = [
|
402 |
-
ModelData(
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
407 |
]
|
408 |
-
vali_runs = get_wandb_runs(
|
|
|
|
|
|
|
409 |
|
410 |
scores = get_scores([x.uid for x in model_data], vali_runs)
|
411 |
|
412 |
validator_df = {
|
413 |
28: (1.0, 33273.4453125, {253: 1.0}),
|
414 |
-
49: (
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
|
|
|
|
|
|
|
|
422 |
78: (1.0, 26730.37109375, {253: 1.0}),
|
423 |
116: (1.0, 629248.4375, {253: 1.0}),
|
424 |
150: (1.0, 272634.53125, {253: 1.0}),
|
@@ -438,11 +527,11 @@ def test_load_state_vars():
|
|
438 |
249: (1.0, 478127.3125, {253: 1.0}),
|
439 |
252: (1.0, 442395.03125, {253: 1.0}),
|
440 |
254: (1.0, 46845.2109375, {253: 1.0}),
|
441 |
-
255: (1.0, 28977.56640625, {253: 1.0})
|
442 |
}
|
443 |
|
444 |
return {
|
445 |
-
|
446 |
"model_data": model_data,
|
447 |
"vali_runs": vali_runs,
|
448 |
"scores": scores,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import argparse
|
2 |
+
import datetime
|
3 |
import functools
|
4 |
+
import json
|
5 |
+
import math
|
6 |
+
import os
|
7 |
+
import time
|
8 |
import traceback
|
9 |
+
from dataclasses import dataclass
|
10 |
+
from typing import Any, Dict, List, Optional, Tuple
|
11 |
|
|
|
|
|
12 |
import bittensor as bt
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import wandb
|
|
|
16 |
from bittensor.extrinsics.serving import get_metadata
|
17 |
+
from dotenv import load_dotenv
|
18 |
|
19 |
+
# TODO: Update once registered
|
20 |
+
NETUID = 179
|
21 |
DELAY_SECS = 3
|
22 |
RETRIES = 3
|
23 |
|
|
|
25 |
|
26 |
WANDB_TOKEN = os.environ.get("WANDB_API_KEY", None)
|
27 |
SUBTENSOR_ENDPOINT = os.environ.get("SUBTENSOR_ENDPOINT", None)
|
28 |
+
VALIDATOR_WANDB_PROJECT = "rusticluftig/finetuning"
|
29 |
+
BENCHMARK_WANDB_PROJECT = ""
|
30 |
BENCHMARK_FLAG = os.environ.get("BENCHMARK_FLAG", None)
|
31 |
|
32 |
+
|
33 |
+
@dataclass(frozen=True)
|
34 |
class ModelData:
|
35 |
uid: int
|
36 |
hotkey: str
|
37 |
+
competition_id: int
|
38 |
namespace: str
|
39 |
name: str
|
40 |
commit: str
|
41 |
+
|
42 |
+
# Hash of (hash(model) + hotkey)
|
43 |
+
secure_hash: str
|
44 |
block: int
|
45 |
incentive: float
|
46 |
emission: float
|
|
|
62 |
hotkey=hotkey,
|
63 |
namespace=tokens[0],
|
64 |
name=tokens[1],
|
65 |
+
commit=tokens[2],
|
66 |
+
secure_hash=tokens[3],
|
67 |
+
competition_id=int(tokens[4]),
|
68 |
block=block,
|
69 |
incentive=incentive,
|
70 |
emission=emission,
|
|
|
72 |
|
73 |
|
74 |
def run_with_retries(func, *args, **kwargs):
|
75 |
+
"""Runs a provided function with retries in the event of a failure."""
|
76 |
for i in range(0, RETRIES):
|
77 |
try:
|
78 |
return func(*args, **kwargs)
|
|
|
85 |
|
86 |
|
87 |
def get_subtensor_and_metagraph() -> Tuple[bt.subtensor, bt.metagraph]:
|
88 |
+
"""Returns a subtensor and metagraph for the finetuning subnet."""
|
89 |
|
90 |
def _internal() -> Tuple[bt.subtensor, bt.metagraph]:
|
91 |
if SUBTENSOR_ENDPOINT:
|
92 |
parser = argparse.ArgumentParser()
|
93 |
bt.subtensor.add_args(parser)
|
94 |
+
subtensor = bt.subtensor(
|
95 |
+
config=bt.config(
|
96 |
+
parser=parser,
|
97 |
+
args=["--subtensor.chain_endpoint", SUBTENSOR_ENDPOINT],
|
98 |
+
)
|
99 |
+
)
|
100 |
else:
|
101 |
subtensor = bt.subtensor("finney")
|
102 |
|
|
|
245 |
for _, uid_data in all_uid_data.items():
|
246 |
loss = uid_data.get("average_loss", math.inf)
|
247 |
# Filter out the numbers from the exploit and when validators lost the best model.
|
248 |
+
if (
|
249 |
+
loss < best_loss
|
250 |
+
and (loss > 2.5 or timestamp > datetime.datetime(2024, 2, 12))
|
251 |
+
and (loss < 5 or timestamp > datetime.datetime(2024, 3, 27))
|
252 |
+
):
|
253 |
best_loss = uid_data["average_loss"]
|
254 |
if best_loss != math.inf:
|
255 |
timestamps.append(timestamp)
|
|
|
312 |
if artifacts:
|
313 |
table = artifacts[-1].get("benchmarks")
|
314 |
if table:
|
315 |
+
return table.get_dataframe(), datetime.datetime.strptime(
|
316 |
+
run.metadata["startedAt"], "%Y-%m-%dT%H:%M:%S.%f"
|
317 |
+
)
|
318 |
bt.logging.error("Failed to get benchmarks from Wandb.")
|
319 |
return None, None
|
320 |
|
321 |
|
322 |
+
def make_validator_dataframe(
|
323 |
+
validator_df: pd.DataFrame, model_data: ModelData
|
324 |
+
) -> pd.DataFrame:
|
325 |
|
326 |
values = [
|
327 |
+
[uid, int(validator_df[uid][1]), round(validator_df[uid][0], 4)]
|
328 |
+
+ [validator_df[uid][-1].get(c.uid) for c in model_data if c.incentive]
|
329 |
+
for uid, _ in sorted(
|
330 |
+
zip(
|
331 |
+
validator_df.keys(),
|
332 |
+
[validator_df[x][1] for x in validator_df.keys()],
|
333 |
+
),
|
334 |
+
key=lambda x: x[1],
|
335 |
+
reverse=True,
|
336 |
+
)
|
337 |
+
]
|
338 |
+
dtypes = {"UID": int, "Stake (τ)": float, "V-Trust": float}
|
339 |
+
dtypes.update(
|
340 |
+
{
|
|
|
|
|
|
|
341 |
f"{c.namespace}/{c.name} ({c.commit[0:8]})": float
|
342 |
for c in model_data
|
343 |
if c.incentive
|
344 |
+
}
|
345 |
+
)
|
346 |
return pd.DataFrame(values, columns=dtypes.keys()).astype(dtypes)
|
347 |
|
348 |
+
|
349 |
def make_metagraph_dataframe(metagraph: bt.metagraph, weights=False) -> pd.DataFrame:
|
350 |
|
351 |
+
cols = [
|
352 |
+
"stake",
|
353 |
+
"emission",
|
354 |
+
"trust",
|
355 |
+
"validator_trust",
|
356 |
+
"dividends",
|
357 |
+
"incentive",
|
358 |
+
"R",
|
359 |
+
"consensus",
|
360 |
+
"validator_permit",
|
361 |
+
]
|
362 |
|
363 |
frame = pd.DataFrame({k: getattr(metagraph, k) for k in cols})
|
364 |
+
frame["block"] = metagraph.block.item()
|
365 |
+
frame["netuid"] = NETUID
|
366 |
+
frame["uid"] = range(len(frame))
|
367 |
+
frame["hotkey"] = [axon.hotkey for axon in metagraph.axons]
|
368 |
+
frame["coldkey"] = [axon.coldkey for axon in metagraph.axons]
|
369 |
if weights and metagraph.W is not None:
|
370 |
# convert NxN tensor to a list of lists so it fits into the dataframe
|
371 |
+
frame["weights"] = [w.tolist() for w in metagraph.W]
|
372 |
|
373 |
return frame
|
374 |
|
375 |
+
|
376 |
def load_state_vars() -> dict[Any]:
|
377 |
while True:
|
378 |
try:
|
|
|
383 |
model_data: List[ModelData] = get_subnet_data(subtensor, metagraph)
|
384 |
model_data.sort(key=lambda x: x.incentive, reverse=True)
|
385 |
|
386 |
+
bt.logging.success(f"Loaded {len(model_data)} models")
|
387 |
+
vali_runs = get_wandb_runs(
|
388 |
+
project=VALIDATOR_WANDB_PROJECT,
|
389 |
+
filters={"config.type": "validator", "config.uid": 238},
|
390 |
+
)
|
391 |
|
392 |
scores = get_scores([x.uid for x in model_data], vali_runs)
|
393 |
|
|
|
416 |
time.sleep(30)
|
417 |
|
418 |
return {
|
419 |
+
"metagraph": metagraph,
|
420 |
"model_data": model_data,
|
421 |
"vali_runs": vali_runs,
|
422 |
"scores": scores,
|
423 |
"validator_df": validator_df,
|
424 |
"benchmarks": benchmarks,
|
425 |
+
"benchmark_timestamp": benchmark_timestamp,
|
426 |
}
|
427 |
|
428 |
+
|
429 |
def test_load_state_vars():
|
430 |
|
431 |
subtensor = bt.subtensor("finney")
|
432 |
metagraph = subtensor.metagraph(NETUID, lite=True)
|
433 |
model_data = [
|
434 |
+
ModelData(
|
435 |
+
uid=253,
|
436 |
+
hotkey="5DjoPAgZ54Zf6NsuiVYh8RjonnWWWREE2iXBNzM2VDBMQDPm",
|
437 |
+
namespace="jw-hf-test",
|
438 |
+
name="jw2",
|
439 |
+
commit="aad131f6b02219964e6dcf749c2a23e75a7ceca8",
|
440 |
+
secure_hash="L1ImYzWJwV+9KSnZ2TYW0Iy2KMcVjJVTd30YJoRkpbw=",
|
441 |
+
block=3131103,
|
442 |
+
incentive=1.0,
|
443 |
+
emission=209.06051635742188,
|
444 |
+
),
|
445 |
+
ModelData(
|
446 |
+
uid=1,
|
447 |
+
hotkey="5CccVtjk4yamCao6QYgEg7jc8vktdj16RbLKNUftHfEsjuJS",
|
448 |
+
namespace="borggAI",
|
449 |
+
name="bittensor-subnet9-models",
|
450 |
+
commit="d373864bc6c972872edb8db95eed570958054bac",
|
451 |
+
secure_hash="+drdTIKYEGYClW2FFVVID6A2Dh//4rLmExRFCJsH6Y4=",
|
452 |
+
block=2081837,
|
453 |
+
incentive=0.0,
|
454 |
+
emission=0.0,
|
455 |
+
),
|
456 |
+
ModelData(
|
457 |
+
uid=2,
|
458 |
+
hotkey="5HYwoXaczs3jAptbb5mk4aUCkgZqeNcNzJKxSec97GwasfLy",
|
459 |
+
namespace="jungiebeen",
|
460 |
+
name="pretrain1",
|
461 |
+
commit="4c0c6bfd0f92e243d6c8a82209142e7204c852c3",
|
462 |
+
secure_hash="ld/agc0XIWICom/Cpj0fkQLcMogMNj/F65MJogK5RLY=",
|
463 |
+
block=2467482,
|
464 |
+
incentive=0.0,
|
465 |
+
emission=0.0,
|
466 |
+
),
|
467 |
+
ModelData(
|
468 |
+
uid=3,
|
469 |
+
hotkey="5Dnb6edh9yTeEp5aasRPZVPRAkxvQ6qnERVcXw22awMZ5rxm",
|
470 |
+
namespace="jungiebeen",
|
471 |
+
name="pretrain2",
|
472 |
+
commit="e827b7281c92224adb11124489cc45356553a87a",
|
473 |
+
secure_hash="ld/agc0XIWICom/Cpj0fkQLcMogMNj/F65MJogK5RLY=",
|
474 |
+
block=2467497,
|
475 |
+
incentive=0.0,
|
476 |
+
emission=0.0,
|
477 |
+
),
|
478 |
+
ModelData(
|
479 |
+
uid=4,
|
480 |
+
hotkey="5FRfca8NbnH424WaX43PMhKBnbLA1bZpRRoXXiVs6HgsxN4K",
|
481 |
+
namespace="ZainAli60",
|
482 |
+
name="mine_modeles",
|
483 |
+
commit="8a4ed4ad1f1fb58d424fd22e8e9874b87d32917c",
|
484 |
+
secure_hash="tVcbZAFoNIOF+Ntxq31OQ2NrLXf5iFCmmPUJlpkMYYo=",
|
485 |
+
block=2508509,
|
486 |
+
incentive=0.0,
|
487 |
+
emission=0.0,
|
488 |
+
),
|
489 |
]
|
490 |
+
vali_runs = get_wandb_runs(
|
491 |
+
project=VALIDATOR_WANDB_PROJECT,
|
492 |
+
filters={"config.type": "validator", "config.uid": 238},
|
493 |
+
)
|
494 |
|
495 |
scores = get_scores([x.uid for x in model_data], vali_runs)
|
496 |
|
497 |
validator_df = {
|
498 |
28: (1.0, 33273.4453125, {253: 1.0}),
|
499 |
+
49: (
|
500 |
+
0.9127794504165649,
|
501 |
+
10401.677734375,
|
502 |
+
{
|
503 |
+
7: 0.0867,
|
504 |
+
217: 0.0001,
|
505 |
+
219: 0.0001,
|
506 |
+
241: 0.0001,
|
507 |
+
248: 0.0001,
|
508 |
+
253: 0.9128,
|
509 |
+
},
|
510 |
+
),
|
511 |
78: (1.0, 26730.37109375, {253: 1.0}),
|
512 |
116: (1.0, 629248.4375, {253: 1.0}),
|
513 |
150: (1.0, 272634.53125, {253: 1.0}),
|
|
|
527 |
249: (1.0, 478127.3125, {253: 1.0}),
|
528 |
252: (1.0, 442395.03125, {253: 1.0}),
|
529 |
254: (1.0, 46845.2109375, {253: 1.0}),
|
530 |
+
255: (1.0, 28977.56640625, {253: 1.0}),
|
531 |
}
|
532 |
|
533 |
return {
|
534 |
+
"metagraph": metagraph,
|
535 |
"model_data": model_data,
|
536 |
"vali_runs": vali_runs,
|
537 |
"scores": scores,
|