Spaces:
Sleeping
Sleeping
File size: 10,308 Bytes
aad220f 2ebf70b aad220f bfcef2d aad220f 9da9693 aad220f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
import os
import tqdm
import time
import wandb
import streamlit as st
import pandas as pd
import bittensor as bt
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
# TODO: filter out netuid 141(?)
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
MAX_RUNS = 100#0000
NETUID = 25
BASE_PATH = 'macrocosmos/folding-validators--moved'
NETWORK = 'finney'
KEYS = None
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
PDBS_PER_RUN_STEP = 0.083
AVG_MD_STEPS = 30_000
BASE_UNITS = 'MB'
api = wandb.Api(timeout=120, api_key=os.environ['WANDB_API_KEY'])
IDENTITIES = {
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}
EXTRACTORS = {
'state': lambda x: x.state,
'run_id': lambda x: x.id,
'user': lambda x: x.user.name[:16],
'username': lambda x: x.user.username[:16],
'created_at': lambda x: pd.Timestamp(x.created_at),
'last_event_at': lambda x: pd.Timestamp(x.summary.get('_timestamp'), unit='s'),
'netuid': lambda x: x.config.get('netuid'),
'mock': lambda x: x.config.get('neuron').get('mock'),
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
'timeout': lambda x: x.config.get('neuron').get('timeout'),
'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
'num_steps': lambda x: x.summary.get('_step'),
'runtime': lambda x: x.summary.get('_runtime'),
'init_energy': lambda x: x.summary.get('init_energy'),
'best_energy': lambda x: x.summary.get('best_loss'),
'pdb_id': lambda x: x.summary.get('pdb_id'),
'pdb_updates': lambda x: x.summary.get('updated_count'),
'total_returned_sizes': lambda x: get_total_file_sizes(x),
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
'pdb_atoms': lambda x: get_pdb_complexity(x),
'version': lambda x: x.tags[0],
'spec_version': lambda x: x.tags[1],
'vali_hotkey': lambda x: x.tags[2],
# System metrics
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_pdb_complexity(run, field='ATOM', preprocess=True):
data = run.summary.get('pdb_complexity')
if not isinstance(data, list) or len(data)==0:
return None
data = data[0]
counts = data.get(field)
if counts is not None:
return counts
counts = 0
for key in data.keys():
if key.startswith(field):
counts+=data.get(key)
return counts
def convert_unit(value, from_unit, to_unit):
"""Converts a value from one unit to another
example:
convert_unit(1024, 'KB', 'MB') -> 1
convert_unit(1024, 'MB', 'KB') -> 1048576
"""
units = ['B', 'KB','MB','GB','TB']
assert from_unit.upper() in units, f'From unit {from_unit!r} not in {units}'
assert to_unit.upper() in units, f'To unit {to_unit!r} not in {units}'
factor = 1024**(units.index(from_unit) - units.index(to_unit))
# print(f'Converting from {from_unit!r} to {to_unit!r}, factor: {factor}')
return value * factor
def get_total_file_sizes(run):
"""returns total size of byte strings in bytes"""
# for sizes in run.summary.get('response_returned_files_sizes',[[]]):
# if sizes and sized is not None:
# for size in sizes:
file_sizes = run.summary.get('response_returned_files_sizes',[[]])
if file_sizes is None:
return 0
size_bytes = sum(size for sizes in file_sizes for size in sizes if sizes and sizes is not None)
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_total_md_input_sizes(run):
"""returns total size of byte strings in bytes"""
size_bytes = sum(run.summary.get('md_inputs_sizes',[]))
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_data_transferred(df, unit='GB'):
factor = convert_unit(1, from_unit=BASE_UNITS, to_unit=unit)
sent = df.total_data_sent.sum()
received = df.total_data_received.sum()
return {
'sent':sent * factor,
'received':received * factor,
'total': (sent + received) * factor,
'read':df.disk_read.sum() * factor,
'write':df.disk_write.sum() * factor,
}
def get_productivity(df):
# Estimate the number of unique pdbs folded using our heuristic
unique_folded = df.unique_pdbs.sum().round()
# Estimate the total number of simulations completed using our heuristic
total_simulations = df.total_pdbs.sum().round()
# Estimate the total number of simulation steps completed using our heuristic
total_md_steps = df.total_md_steps.sum().round()
return {
'unique_folded': unique_folded,
'total_simulations': total_simulations,
'total_md_steps': total_md_steps,
}
def get_leaderboard(df, ntop=10, entity_choice='identity'):
df = df.loc[df.validator_permit==False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index().tail(ntop)
@st.cache_data()
def get_metagraph(time):
print(f'Loading metagraph with time {time}')
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m['uid'] = range(m.n.item())
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
df_m['port'] = list(map(lambda a: a.port, m.axons))
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
return df_m
@st.cache_data()
def load_run(run_path, keys=KEYS):
print('Loading run:', run_path)
run = api.run(run_path)
df = pd.DataFrame(list(run.scan_history(keys=keys)))
for col in ['updated_at', 'best_loss_at', 'created_at']:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
print(f'+ Loaded {len(df)} records')
return df
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, path=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = '_saved_runs.csv'
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df['created_at'] = pd.to_datetime(df['created_at'])
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
timestamp_str = df['last_event_at'].max().isoformat()
filters.update({'updated_at': {'$gte': timestamp_str}})
progress = st.progress(0, text='Loading data')
runs = api.runs(path, filters=filters)
run_data = []
n_events = 0
for i, run in enumerate(tqdm.tqdm(runs, total=len(runs))):
num_steps = run.summary.get('_step',0)
if num_steps<min_steps:
continue
n_events += num_steps
prog_msg = f'Loading data {i/len(runs)*100:.0f}%, {n_events:,.0f} events)'
progress.progress(i/len(runs),text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
run_data.append(run)
progress.empty()
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
df = pd.concat([df, df_new], ignore_index=True)
df['duration'] = (df.last_event_at - df.created_at).round('s')
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
# Estimate the number of unique pdbs in a run as a function of the steps in the run
df['unique_pdbs'] = df['num_steps'] * PDBS_PER_RUN_STEP
df['total_pdbs'] = df['unique_pdbs'] * df['sample_size']
# Estimate the number of md steps as the average per simulation multiplied by our estimate of total sims
df['total_md_steps'] = df['total_pdbs'] * AVG_MD_STEPS
df['total_data_sent'] = df['total_sent_sizes'] * df['num_steps']
df['total_data_received'] = df['total_returned_sizes'] * df['num_steps']
df.to_csv(save_path, index=False)
return df
def load_state_vars():
UPDATE_INTERVAL = 600
df = build_data(time.time()//UPDATE_INTERVAL)
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
df_24h = df.loc[runs_alive_24h_ago]
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
return {
'dataframe': df,
'dataframe_24h': df_24h,
'metagraph': df_m,
}
if __name__ == '__main__':
print('Loading runs')
df = load_runs()
df.to_csv('test_wandb_data.csv', index=False)
print(df)
|