Spaces:
Running
Running
File size: 17,028 Bytes
5144f34 aad220f 5144f34 aad220f 6391563 aad220f 6391563 aad220f 5a605f5 aad220f 6391563 aad220f 6391563 aad220f 6391563 aad220f 6391563 aad220f 6391563 aad220f 9da9693 aad220f 5144f34 328256f 5144f34 328256f 6391563 328256f 6391563 aad220f 2508d8e aad220f 2508d8e 0872630 2508d8e 0872630 2508d8e 0872630 aad220f 2508d8e 0872630 2508d8e 0872630 aad220f 2508d8e aad220f 2508d8e aad220f 6391563 aad220f 2508d8e aad220f 6391563 aad220f 6391563 aad220f 6391563 aad220f 6391563 aad220f 5a605f5 aad220f 5a605f5 aad220f 5a605f5 aad220f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 |
import json
import os
import time
import bittensor as bt
import numpy as np
import pandas as pd
import streamlit as st
import tqdm
import wandb
# TODO: Store the runs dataframe (as in sn1 dashboard) and top up with the ones created since the last snapshot
# TODO: Store relevant wandb data in a database for faster access
# TODO: filter out netuid 141(?)
MIN_STEPS = 12 # minimum number of steps in wandb run in order to be worth analyzing
MAX_RUNS = 100#0000
NETUID = 25
BASE_PATH = 'macrocosmos/folding-validators' # added historical data from otf wandb and current data
NETWORK = 'finney'
KEYS = None
ABBREV_CHARS = 8
ENTITY_CHOICES = ('identity', 'hotkey', 'coldkey')
PDBS_PER_RUN_STEP = 0.083
AVG_MD_STEPS = 30_000
BASE_UNITS = 'GB'
SAVE_PATH = 'current_runs/'
# Check if the directory exists
if not os.path.exists(SAVE_PATH):
# If it doesn't exist, create the directory
os.makedirs(SAVE_PATH)
api = wandb.Api(timeout=120, api_key='cdcbe340bb7937d3a289d39632491d12b39231b7')
IDENTITIES = {
'5F4tQyWrhfGVcNhoqeiNsR6KjD4wMZ2kfhLj4oHYuyHbZAc3': 'opentensor',
'5Hddm3iBFD2GLT5ik7LZnT3XJUnRnN8PoeCFgGQgawUVKNm8': 'taostats',
'5HEo565WAy4Dbq3Sv271SAi7syBSofyfhhwRNjFNSM2gP9M2': 'foundry',
'5HK5tp6t2S59DywmHRWPBVJeJ86T61KjurYqeooqj8sREpeN': 'bittensor-guru',
'5FFApaS75bv5pJHfAp2FVLBj9ZaXuFDjEypsaBNc1wCfe52v': 'roundtable-21',
'5EhvL1FVkQPpMjZX4MAADcW42i3xPSF1KiCpuaxTYVr28sux': 'tao-validator',
'5FKstHjZkh4v3qAMSBa1oJcHCLjxYZ8SNTSz1opTv4hR7gVB': 'datura',
'5DvTpiniW9s3APmHRYn8FroUWyfnLtrsid5Mtn5EwMXHN2ed': 'first-tensor',
'5HbLYXUBy1snPR8nfioQ7GoA9x76EELzEq9j7F32vWUQHm1x': 'tensorplex',
'5CsvRJXuR955WojnGMdok1hbhffZyB4N5ocrv82f3p5A2zVp': 'owl-ventures',
'5CXRfP2ekFhe62r7q3vppRajJmGhTi7vwvb2yr79jveZ282w': 'rizzo',
'5HNQURvmjjYhTSksi8Wfsw676b4owGwfLR2BFAQzG7H3HhYf': 'neural-internet'
}
EXTRACTORS = {
'state': lambda x: x.state,
'run_id': lambda x: x.id,
'user': lambda x: x.user.name[:16],
'username': lambda x: x.user.username[:16],
# 'created_at': lambda x: pd.Timestamp(x.created_at),
'last_event_at': lambda x: pd.to_datetime(x.summary.get('_timestamp'), errors='coerce'),
'netuid': lambda x: x.config.get('netuid'),
'mock': lambda x: x.config.get('neuron').get('mock'),
'sample_size': lambda x: x.config.get('neuron').get('sample_size'),
'queue_size': lambda x: x.config.get('neuron').get('queue_size'),
'timeout': lambda x: x.config.get('neuron').get('timeout'),
# 'update_interval': lambda x: x.config.get('neuron').get('update_interval'),
'epoch_length': lambda x: x.config.get('neuron').get('epoch_length'),
'disable_set_weights': lambda x: x.config.get('neuron').get('disable_set_weights'),
# This stuff is from the last logged event
'num_steps': lambda x: x.summary.get('_step'),
# 'runtime': lambda x: x.summary.get('_runtime'),
# 'init_energy': lambda x: x.summary.get('init_energy'),
# 'best_energy': lambda x: x.summary.get('best_loss'),
# 'pdb_id': lambda x: x.summary.get('pdb_id'),
'pdb_updates': lambda x: x.summary.get('updated_count'),
'total_returned_sizes': lambda x: get_total_file_sizes(x),
'total_sent_sizes': lambda x: get_total_md_input_sizes(x),
'pdb_atoms': lambda x: get_pdb_complexity(x),
'version': lambda x: x.tags[0],
'spec_version': lambda x: x.tags[1],
'vali_hotkey': lambda x: x.tags[2],
# System metrics
'disk_read': lambda x: x.system_metrics.get('system.disk.in'),
'disk_write': lambda x: x.system_metrics.get('system.disk.out'),
'network_sent': lambda x: x.system_metrics.get('system.network.sent'),
'network_recv': lambda x: x.system_metrics.get('system.network.recv'),
# Really slow stuff below
# 'started_at': lambda x: x.metadata.get('startedAt'),
# 'disk_used': lambda x: x.metadata.get('disk').get('/').get('used'),
# 'commit': lambda x: x.metadata.get('git').get('commit')
}
def get_pdb_complexity(run, field='ATOM', preprocess=True):
data = run.summary.get('pdb_complexity')
if not isinstance(data, list) or len(data)==0:
return None
data = data[0]
counts = data.get(field)
if counts is not None:
return counts
counts = 0
for key in data.keys():
if key.startswith(field):
counts+=data.get(key)
return counts
def convert_unit(value, from_unit, to_unit):
"""Converts a value from one unit to another
example:
convert_unit(1024, 'KB', 'MB') -> 1
convert_unit(1024, 'MB', 'KB') -> 1048576
"""
units = ['B', 'KB','MB','GB','TB']
assert from_unit.upper() in units, f'From unit {from_unit!r} not in {units}'
assert to_unit.upper() in units, f'To unit {to_unit!r} not in {units}'
factor = 1024**(units.index(from_unit) - units.index(to_unit))
# print(f'Converting from {from_unit!r} to {to_unit!r}, factor: {factor}')
return value * factor
def get_total_file_sizes(run):
"""returns total size of byte strings in bytes"""
# for sizes in run.summary.get('response_returned_files_sizes',[[]]):
# if sizes and sized is not None:
# for size in sizes:
file_sizes = run.summary.get('response_returned_files_sizes',[[]])
if file_sizes is None:
return 0
size_bytes = sum(size for sizes in file_sizes for size in sizes if sizes and sizes is not None)
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_total_md_input_sizes(run):
"""returns total size of byte strings in bytes"""
size_bytes = sum(run.summary.get('md_inputs_sizes',[]))
return convert_unit(size_bytes, from_unit='B', to_unit=BASE_UNITS)
def get_data_transferred(df, df_24h, unit='GB'):
def safe_json_loads(x):
try:
return json.loads(x)
except ValueError:
return []
def np_sum(x):
try:
# Flatten the list of lists and convert it to a NumPy array
flat_array = np.array([item for sublist in x for item in sublist])
# Use np.sum() to sum all elements in the flattened array
total_sum = np.sum(flat_array)
return total_sum
except TypeError:
return 0
df = df.dropna(subset=['md_inputs_sizes', 'response_returned_files_sizes'])
df['md_inputs_sizes'] = df.md_inputs_sizes.apply(safe_json_loads)
df['response_returned_files_sizes'] = df.response_returned_files_sizes.apply(safe_json_loads)
df['md_inputs_sum'] = df.md_inputs_sizes.apply(np.sum)
df['md_outputs_sum'] = df.response_returned_files_sizes.apply(np_sum)
df['md_inputs_sum'] = df['md_inputs_sum'].apply(convert_unit, from_unit='B', to_unit=BASE_UNITS)
df['md_outputs_sum'] = df['md_outputs_sum'].apply(convert_unit, from_unit='B', to_unit=BASE_UNITS)
df_24h = df_24h.dropna(subset=['md_inputs_sizes', 'response_returned_files_sizes'])
df_24h['md_inputs_sizes'] = df_24h.md_inputs_sizes.apply(safe_json_loads)
df_24h['response_returned_files_sizes'] = df_24h.response_returned_files_sizes.apply(safe_json_loads)
df_24h['md_inputs_sum'] = df_24h.md_inputs_sizes.apply(np.sum)
df_24h['md_outputs_sum'] = df_24h.response_returned_files_sizes.apply(np_sum)
validator_sent = np.nansum(df['md_inputs_sum'].values)
miner_sent = np.nansum(df['md_outputs_sum'].values)
validator_sent_24h = np.nansum(df_24h['md_inputs_sum'].values)
miner_sent_24h = np.nansum(df_24h['md_outputs_sum'].values)
return {'all_time': {
'validator_sent': validator_sent,
'miner_sent': miner_sent,
},
'last_24h': {
'validator_sent': convert_unit(validator_sent_24h, from_unit='B', to_unit=BASE_UNITS),
'miner_sent': convert_unit(miner_sent_24h, from_unit='B', to_unit=BASE_UNITS),
},
'data': df[['md_inputs_sum', 'md_outputs_sum', 'updated_at']].to_dict()
}
def calculate_productivity_data(df):
completed_jobs = df[df['updated_count'] == 10]
completed_jobs['last_event_at'] = pd.to_datetime(completed_jobs['updated_at'])
unique_folded = completed_jobs.drop_duplicates(subset=['pdb_id'], keep='first')
completed_jobs = completed_jobs.sort_values(by='last_event_at').reset_index()
completed_jobs['cumulative_jobs'] = completed_jobs.index + 1
unique_folded = unique_folded.sort_values(by='last_event_at').reset_index()
unique_folded['cumulative_jobs'] = unique_folded.index + 1
return {
'unique_folded': len(unique_folded),
'total_completed_jobs': len(completed_jobs),
'unique_folded_data': {'last_event_at': unique_folded['last_event_at'].dt.to_pydatetime(), 'cumulative_jobs':unique_folded['cumulative_jobs'].values},
'total_completed_jobs_data': {'last_event_at': completed_jobs['last_event_at'].dt.to_pydatetime(), 'cumulative_jobs':completed_jobs['cumulative_jobs'].values}
}
def get_productivity(df_all, df_24h, df_30d):
result = {
'all_time': {
'unique_folded': 0,
'total_completed_jobs': 0,
'unique_folded_data': {},
'total_completed_jobs_data': {}
},
'last_24h': {
'unique_folded': 0,
'total_completed_jobs': 0,
"unique_folded_data": {},
'total_completed_jobs_data': {}
},
'last_30d': {
'unique_folded': 0,
'total_completed_jobs': 0,
"unique_folded_data": {},
'total_completed_jobs_data': {}
}
}
if df_all is not None:
result['all_time'].update(calculate_productivity_data(df_all))
if df_24h is not None:
result['last_24h'].update(calculate_productivity_data(df_24h))
if df_30d is not None:
result['last_30d'].update(calculate_productivity_data(df_30d))
return result
def get_leaderboard(df, entity_choice='identity'):
df = df.loc[df.validator_permit==False]
df.index = range(df.shape[0])
return df.groupby(entity_choice).I.sum().sort_values().reset_index()
def fetch_new_runs(base_path: str = BASE_PATH , netuid: int = 25, min_steps: int = 10, save_path: str= SAVE_PATH, extractors: dict = EXTRACTORS):
runs_checker = pd.read_csv('runs_checker.csv')
current_time = pd.to_datetime(time.time(), unit='s')
current_time_str = current_time.strftime('%y-%m-%d') # Format as 'YYYYMMDD'
new_ticker = runs_checker.check_ticker.max() + 1
new_rows_list = []
# update runs list based on all current runs running
for run in api.runs(base_path):
num_steps = run.summary.get('_step')
if run.config.get('netuid') != netuid:
continue
if num_steps is None or num_steps < min_steps:
continue
if run.state =='running':
new_rows_list.append({
'run_id': run.id,
'state': run.state,
'step': num_steps,
'check_time': current_time,
'check_ticker': new_ticker,
'user': run.user.name[:16],
'username': run.user.username[:16]
})
if new_rows_list:
new_rows_df = pd.DataFrame(new_rows_list)
runs_checker= pd.concat([runs_checker, new_rows_df], ignore_index=True)
# save
runs_checker.to_csv('runs_checker.csv', index=False)
bt.logging.info(f'Cross checking runs for ticker {new_ticker} against previous ticker')
previous_check = runs_checker[runs_checker.check_ticker==new_ticker - 1]
current_check = runs_checker[runs_checker.check_ticker == new_ticker]
# save ended runs from last check
for run_id in previous_check.run_id:
if run_id not in current_check.run_id:
frame = load_run(f'{base_path}/{run_id}', extractors=EXTRACTORS)
csv_path = os.path.join(save_path, f"{run_id}.csv")
frame.to_csv(csv_path)
# save new runs
for run in api.runs(base_path):
if run.config.get('netuid') != netuid:
continue
num_steps = run.summary.get('_step')
if num_steps is None or num_steps < min_steps:
continue
if run.state =='running':
frame = load_run(run_path='/'.join(run.path), extractors=EXTRACTORS)
csv_path = os.path.join(save_path, f"{run.id}.csv")
frame.to_csv(csv_path)
def preload_data():
# save all the paths of files to a list in a directory
paths_list = []
for path in os.listdir(SAVE_PATH):
paths_list.append(os.path.join(SAVE_PATH, path))
df_list = []
for path in paths_list:
df = pd.read_csv(path,low_memory=False)
df_list.append(df)
combined_df = pd.concat(df_list, ignore_index=True)
return combined_df
@st.cache_data()
def get_metagraph():
subtensor = bt.subtensor(network=NETWORK)
m = subtensor.metagraph(netuid=NETUID)
meta_cols = ['I','stake','trust','validator_trust','validator_permit','C','R','E','dividends','last_update']
df_m = pd.DataFrame({k: getattr(m, k) for k in meta_cols})
df_m['uid'] = range(m.n.item())
df_m['hotkey'] = list(map(lambda a: a.hotkey, m.axons))
df_m['coldkey'] = list(map(lambda a: a.coldkey, m.axons))
df_m['ip'] = list(map(lambda a: a.ip, m.axons))
df_m['port'] = list(map(lambda a: a.port, m.axons))
df_m['coldkey'] = df_m.coldkey.str[:ABBREV_CHARS]
df_m['hotkey'] = df_m.hotkey.str[:ABBREV_CHARS]
df_m['identity'] = df_m.apply(lambda x: f'{x.hotkey} @ uid {x.uid}', axis=1)
return df_m
def load_run(run_path: str, extractors: dict):
print('Loading run:', run_path)
run = api.run(run_path)
df = pd.DataFrame(list(run.scan_history()))
for col in ['updated_at', 'best_loss_at', 'created_at']:
if col in df.columns:
df[col] = pd.to_datetime(df[col])
num_rows=len(df)
extractor_df = {key: func(run) for key, func in extractors.items()}
repeated_data = {key: [value] * num_rows for key, value in extractor_df.items()}
extractor_df = pd.DataFrame(repeated_data)
combined_df = pd.concat([df, extractor_df], axis=1)
return combined_df
@st.cache_data(show_spinner=False)
def build_data(timestamp=None, paths=BASE_PATH, min_steps=MIN_STEPS, use_cache=True):
save_path = '_saved_runs.csv'
filters = {}
df = pd.DataFrame()
# Load the last saved runs so that we only need to update the new ones
if use_cache and os.path.exists(save_path):
df = pd.read_csv(save_path)
df['created_at'] = pd.to_datetime(df['created_at'])
df['last_event_at'] = pd.to_datetime(df['last_event_at'])
timestamp_str = df['last_event_at'].max().isoformat()
filters.update({'updated_at': {'$gte': timestamp_str}})
progress = st.progress(0, text='Loading data')
historical_runs = api.runs(paths[0], filters=filters)
historical_and_current_runs = [historical_runs, api.runs(paths[1], filters=filters)]
run_data = []
n_events = 0
total_runs = len(historical_and_current_runs[0])+len(historical_and_current_runs[1])
for runs in historical_and_current_runs:
for i, run in enumerate(tqdm.tqdm(runs, total=total_runs)):
num_steps = run.summary.get('_step',0)
if num_steps<min_steps:
continue
n_events += num_steps
prog_msg = f'Loading data {i/total_runs*100:.0f}%, {n_events:,.0f} events)'
progress.progress(i/total_runs,text=f'{prog_msg}... **downloading** `{os.path.join(*run.path)}`')
run_data.append(run)
progress.empty()
df_new = pd.DataFrame([{k: func(run) for k, func in EXTRACTORS.items()} for run in tqdm.tqdm(run_data, total=len(run_data))])
df = pd.concat([df, df_new], ignore_index=True)
df['duration'] = (df.last_event_at - df.created_at).round('s')
df['identity'] = df['vali_hotkey'].map(IDENTITIES).fillna('unknown')
df['vali_hotkey'] = df['vali_hotkey'].str[:ABBREV_CHARS]
# Estimate the number of unique pdbs in a run as a function of the steps in the run
df['unique_pdbs'] = df['num_steps'] * PDBS_PER_RUN_STEP
df['total_pdbs'] = df['unique_pdbs'] * df['sample_size']
# Estimate the number of md steps as the average per simulation multiplied by our estimate of total sims
df['total_md_steps'] = df['total_pdbs'] * AVG_MD_STEPS
df['total_data_sent'] = df['total_sent_sizes'] * df['num_steps']
df['total_data_received'] = df['total_returned_sizes'] * df['num_steps']
df.to_csv(save_path, index=False)
return df
def load_state_vars():
UPDATE_INTERVAL = 600
df = build_data(time.time()//UPDATE_INTERVAL)
runs_alive_24h_ago = (df.last_event_at > pd.Timestamp.now() - pd.Timedelta('1d'))
df_24h = df.loc[runs_alive_24h_ago]
df_m = get_metagraph(time.time()//UPDATE_INTERVAL)
return {
'dataframe': df,
'dataframe_24h': df_24h,
'metagraph': df_m,
}
|