Spaces:
Runtime error
Runtime error
/* | |
pybind11/pybind11.h: Main header file of the C++11 python | |
binding generator library | |
Copyright (c) 2016 Wenzel Jakob <[email protected]> | |
All rights reserved. Use of this source code is governed by a | |
BSD-style license that can be found in the LICENSE file. | |
*/ | |
PYBIND11_NAMESPACE_BEGIN(PYBIND11_NAMESPACE) | |
/// Wraps an arbitrary C++ function/method/lambda function/.. into a callable Python object | |
class cpp_function : public function { | |
public: | |
cpp_function() { } | |
cpp_function(std::nullptr_t) { } | |
/// Construct a cpp_function from a vanilla function pointer | |
template <typename Return, typename... Args, typename... Extra> | |
cpp_function(Return (*f)(Args...), const Extra&... extra) { | |
initialize(f, f, extra...); | |
} | |
/// Construct a cpp_function from a lambda function (possibly with internal state) | |
template <typename Func, typename... Extra, | |
typename = detail::enable_if_t<detail::is_lambda<Func>::value>> | |
cpp_function(Func &&f, const Extra&... extra) { | |
initialize(std::forward<Func>(f), | |
(detail::function_signature_t<Func> *) nullptr, extra...); | |
} | |
/// Construct a cpp_function from a class method (non-const, no ref-qualifier) | |
template <typename Return, typename Class, typename... Arg, typename... Extra> | |
cpp_function(Return (Class::*f)(Arg...), const Extra&... extra) { | |
initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); }, | |
(Return (*) (Class *, Arg...)) nullptr, extra...); | |
} | |
/// Construct a cpp_function from a class method (non-const, lvalue ref-qualifier) | |
/// A copy of the overload for non-const functions without explicit ref-qualifier | |
/// but with an added `&`. | |
template <typename Return, typename Class, typename... Arg, typename... Extra> | |
cpp_function(Return (Class::*f)(Arg...)&, const Extra&... extra) { | |
initialize([f](Class *c, Arg... args) -> Return { return (c->*f)(args...); }, | |
(Return (*) (Class *, Arg...)) nullptr, extra...); | |
} | |
/// Construct a cpp_function from a class method (const, no ref-qualifier) | |
template <typename Return, typename Class, typename... Arg, typename... Extra> | |
cpp_function(Return (Class::*f)(Arg...) const, const Extra&... extra) { | |
initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(std::forward<Arg>(args)...); }, | |
(Return (*)(const Class *, Arg ...)) nullptr, extra...); | |
} | |
/// Construct a cpp_function from a class method (const, lvalue ref-qualifier) | |
/// A copy of the overload for const functions without explicit ref-qualifier | |
/// but with an added `&`. | |
template <typename Return, typename Class, typename... Arg, typename... Extra> | |
cpp_function(Return (Class::*f)(Arg...) const&, const Extra&... extra) { | |
initialize([f](const Class *c, Arg... args) -> Return { return (c->*f)(args...); }, | |
(Return (*)(const Class *, Arg ...)) nullptr, extra...); | |
} | |
/// Return the function name | |
object name() const { return attr("__name__"); } | |
protected: | |
/// Space optimization: don't inline this frequently instantiated fragment | |
PYBIND11_NOINLINE detail::function_record *make_function_record() { | |
return new detail::function_record(); | |
} | |
/// Special internal constructor for functors, lambda functions, etc. | |
template <typename Func, typename Return, typename... Args, typename... Extra> | |
void initialize(Func &&f, Return (*)(Args...), const Extra&... extra) { | |
using namespace detail; | |
struct capture { remove_reference_t<Func> f; }; | |
/* Store the function including any extra state it might have (e.g. a lambda capture object) */ | |
auto rec = make_function_record(); | |
/* Store the capture object directly in the function record if there is enough space */ | |
if (sizeof(capture) <= sizeof(rec->data)) { | |
/* Without these pragmas, GCC warns that there might not be | |
enough space to use the placement new operator. However, the | |
'if' statement above ensures that this is the case. */ | |
new ((capture *) &rec->data) capture { std::forward<Func>(f) }; | |
if (!std::is_trivially_destructible<Func>::value) | |
rec->free_data = [](function_record *r) { ((capture *) &r->data)->~capture(); }; | |
} else { | |
rec->data[0] = new capture { std::forward<Func>(f) }; | |
rec->free_data = [](function_record *r) { delete ((capture *) r->data[0]); }; | |
} | |
/* Type casters for the function arguments and return value */ | |
using cast_in = argument_loader<Args...>; | |
using cast_out = make_caster< | |
conditional_t<std::is_void<Return>::value, void_type, Return> | |
>; | |
static_assert(expected_num_args<Extra...>(sizeof...(Args), cast_in::has_args, cast_in::has_kwargs), | |
"The number of argument annotations does not match the number of function arguments"); | |
/* Dispatch code which converts function arguments and performs the actual function call */ | |
rec->impl = [](function_call &call) -> handle { | |
cast_in args_converter; | |
/* Try to cast the function arguments into the C++ domain */ | |
if (!args_converter.load_args(call)) | |
return PYBIND11_TRY_NEXT_OVERLOAD; | |
/* Invoke call policy pre-call hook */ | |
process_attributes<Extra...>::precall(call); | |
/* Get a pointer to the capture object */ | |
auto data = (sizeof(capture) <= sizeof(call.func.data) | |
? &call.func.data : call.func.data[0]); | |
capture *cap = const_cast<capture *>(reinterpret_cast<const capture *>(data)); | |
/* Override policy for rvalues -- usually to enforce rvp::move on an rvalue */ | |
return_value_policy policy = return_value_policy_override<Return>::policy(call.func.policy); | |
/* Function scope guard -- defaults to the compile-to-nothing `void_type` */ | |
using Guard = extract_guard_t<Extra...>; | |
/* Perform the function call */ | |
handle result = cast_out::cast( | |
std::move(args_converter).template call<Return, Guard>(cap->f), policy, call.parent); | |
/* Invoke call policy post-call hook */ | |
process_attributes<Extra...>::postcall(call, result); | |
return result; | |
}; | |
/* Process any user-provided function attributes */ | |
process_attributes<Extra...>::init(extra..., rec); | |
{ | |
constexpr bool has_kwonly_args = any_of<std::is_same<kwonly, Extra>...>::value, | |
has_args = any_of<std::is_same<args, Args>...>::value, | |
has_arg_annotations = any_of<is_keyword<Extra>...>::value; | |
static_assert(has_arg_annotations || !has_kwonly_args, "py::kwonly requires the use of argument annotations"); | |
static_assert(!(has_args && has_kwonly_args), "py::kwonly cannot be combined with a py::args argument"); | |
} | |
/* Generate a readable signature describing the function's arguments and return value types */ | |
static constexpr auto signature = _("(") + cast_in::arg_names + _(") -> ") + cast_out::name; | |
PYBIND11_DESCR_CONSTEXPR auto types = decltype(signature)::types(); | |
/* Register the function with Python from generic (non-templated) code */ | |
initialize_generic(rec, signature.text, types.data(), sizeof...(Args)); | |
if (cast_in::has_args) rec->has_args = true; | |
if (cast_in::has_kwargs) rec->has_kwargs = true; | |
/* Stash some additional information used by an important optimization in 'functional.h' */ | |
using FunctionType = Return (*)(Args...); | |
constexpr bool is_function_ptr = | |
std::is_convertible<Func, FunctionType>::value && | |
sizeof(capture) == sizeof(void *); | |
if (is_function_ptr) { | |
rec->is_stateless = true; | |
rec->data[1] = const_cast<void *>(reinterpret_cast<const void *>(&typeid(FunctionType))); | |
} | |
} | |
/// Register a function call with Python (generic non-templated code goes here) | |
void initialize_generic(detail::function_record *rec, const char *text, | |
const std::type_info *const *types, size_t args) { | |
/* Create copies of all referenced C-style strings */ | |
rec->name = strdup(rec->name ? rec->name : ""); | |
if (rec->doc) rec->doc = strdup(rec->doc); | |
for (auto &a: rec->args) { | |
if (a.name) | |
a.name = strdup(a.name); | |
if (a.descr) | |
a.descr = strdup(a.descr); | |
else if (a.value) | |
a.descr = strdup(repr(a.value).cast<std::string>().c_str()); | |
} | |
rec->is_constructor = !strcmp(rec->name, "__init__") || !strcmp(rec->name, "__setstate__"); | |
if (rec->is_constructor && !rec->is_new_style_constructor) { | |
const auto class_name = std::string(((PyTypeObject *) rec->scope.ptr())->tp_name); | |
const auto func_name = std::string(rec->name); | |
PyErr_WarnEx( | |
PyExc_FutureWarning, | |
("pybind11-bound class '" + class_name + "' is using an old-style " | |
"placement-new '" + func_name + "' which has been deprecated. See " | |
"the upgrade guide in pybind11's docs. This message is only visible " | |
"when compiled in debug mode.").c_str(), 0 | |
); | |
} | |
/* Generate a proper function signature */ | |
std::string signature; | |
size_t type_index = 0, arg_index = 0; | |
for (auto *pc = text; *pc != '\0'; ++pc) { | |
const auto c = *pc; | |
if (c == '{') { | |
// Write arg name for everything except *args and **kwargs. | |
if (*(pc + 1) == '*') | |
continue; | |
if (arg_index < rec->args.size() && rec->args[arg_index].name) { | |
signature += rec->args[arg_index].name; | |
} else if (arg_index == 0 && rec->is_method) { | |
signature += "self"; | |
} else { | |
signature += "arg" + std::to_string(arg_index - (rec->is_method ? 1 : 0)); | |
} | |
signature += ": "; | |
} else if (c == '}') { | |
// Write default value if available. | |
if (arg_index < rec->args.size() && rec->args[arg_index].descr) { | |
signature += " = "; | |
signature += rec->args[arg_index].descr; | |
} | |
arg_index++; | |
} else if (c == '%') { | |
const std::type_info *t = types[type_index++]; | |
if (!t) | |
pybind11_fail("Internal error while parsing type signature (1)"); | |
if (auto tinfo = detail::get_type_info(*t)) { | |
handle th((PyObject *) tinfo->type); | |
signature += | |
th.attr("__module__").cast<std::string>() + "." + | |
th.attr("__qualname__").cast<std::string>(); // Python 3.3+, but we backport it to earlier versions | |
} else if (rec->is_new_style_constructor && arg_index == 0) { | |
// A new-style `__init__` takes `self` as `value_and_holder`. | |
// Rewrite it to the proper class type. | |
signature += | |
rec->scope.attr("__module__").cast<std::string>() + "." + | |
rec->scope.attr("__qualname__").cast<std::string>(); | |
} else { | |
std::string tname(t->name()); | |
detail::clean_type_id(tname); | |
signature += tname; | |
} | |
} else { | |
signature += c; | |
} | |
} | |
if (arg_index != args || types[type_index] != nullptr) | |
pybind11_fail("Internal error while parsing type signature (2)"); | |
if (strcmp(rec->name, "__next__") == 0) { | |
std::free(rec->name); | |
rec->name = strdup("next"); | |
} else if (strcmp(rec->name, "__bool__") == 0) { | |
std::free(rec->name); | |
rec->name = strdup("__nonzero__"); | |
} | |
rec->signature = strdup(signature.c_str()); | |
rec->args.shrink_to_fit(); | |
rec->nargs = (std::uint16_t) args; | |
if (rec->sibling && PYBIND11_INSTANCE_METHOD_CHECK(rec->sibling.ptr())) | |
rec->sibling = PYBIND11_INSTANCE_METHOD_GET_FUNCTION(rec->sibling.ptr()); | |
detail::function_record *chain = nullptr, *chain_start = rec; | |
if (rec->sibling) { | |
if (PyCFunction_Check(rec->sibling.ptr())) { | |
auto rec_capsule = reinterpret_borrow<capsule>(PyCFunction_GET_SELF(rec->sibling.ptr())); | |
chain = (detail::function_record *) rec_capsule; | |
/* Never append a method to an overload chain of a parent class; | |
instead, hide the parent's overloads in this case */ | |
if (!chain->scope.is(rec->scope)) | |
chain = nullptr; | |
} | |
// Don't trigger for things like the default __init__, which are wrapper_descriptors that we are intentionally replacing | |
else if (!rec->sibling.is_none() && rec->name[0] != '_') | |
pybind11_fail("Cannot overload existing non-function object \"" + std::string(rec->name) + | |
"\" with a function of the same name"); | |
} | |
if (!chain) { | |
/* No existing overload was found, create a new function object */ | |
rec->def = new PyMethodDef(); | |
std::memset(rec->def, 0, sizeof(PyMethodDef)); | |
rec->def->ml_name = rec->name; | |
rec->def->ml_meth = reinterpret_cast<PyCFunction>(reinterpret_cast<void (*) (void)>(*dispatcher)); | |
rec->def->ml_flags = METH_VARARGS | METH_KEYWORDS; | |
capsule rec_capsule(rec, [](void *ptr) { | |
destruct((detail::function_record *) ptr); | |
}); | |
object scope_module; | |
if (rec->scope) { | |
if (hasattr(rec->scope, "__module__")) { | |
scope_module = rec->scope.attr("__module__"); | |
} else if (hasattr(rec->scope, "__name__")) { | |
scope_module = rec->scope.attr("__name__"); | |
} | |
} | |
m_ptr = PyCFunction_NewEx(rec->def, rec_capsule.ptr(), scope_module.ptr()); | |
if (!m_ptr) | |
pybind11_fail("cpp_function::cpp_function(): Could not allocate function object"); | |
} else { | |
/* Append at the end of the overload chain */ | |
m_ptr = rec->sibling.ptr(); | |
inc_ref(); | |
chain_start = chain; | |
if (chain->is_method != rec->is_method) | |
pybind11_fail("overloading a method with both static and instance methods is not supported; " | |
"compile in debug mode for more details" | |
"error while attempting to bind " + std::string(rec->is_method ? "instance" : "static") + " method " + | |
std::string(pybind11::str(rec->scope.attr("__name__"))) + "." + std::string(rec->name) + signature | |
); | |
while (chain->next) | |
chain = chain->next; | |
chain->next = rec; | |
} | |
std::string signatures; | |
int index = 0; | |
/* Create a nice pydoc rec including all signatures and | |
docstrings of the functions in the overload chain */ | |
if (chain && options::show_function_signatures()) { | |
// First a generic signature | |
signatures += rec->name; | |
signatures += "(*args, **kwargs)\n"; | |
signatures += "Overloaded function.\n\n"; | |
} | |
// Then specific overload signatures | |
bool first_user_def = true; | |
for (auto it = chain_start; it != nullptr; it = it->next) { | |
if (options::show_function_signatures()) { | |
if (index > 0) signatures += "\n"; | |
if (chain) | |
signatures += std::to_string(++index) + ". "; | |
signatures += rec->name; | |
signatures += it->signature; | |
signatures += "\n"; | |
} | |
if (it->doc && strlen(it->doc) > 0 && options::show_user_defined_docstrings()) { | |
// If we're appending another docstring, and aren't printing function signatures, we | |
// need to append a newline first: | |
if (!options::show_function_signatures()) { | |
if (first_user_def) first_user_def = false; | |
else signatures += "\n"; | |
} | |
if (options::show_function_signatures()) signatures += "\n"; | |
signatures += it->doc; | |
if (options::show_function_signatures()) signatures += "\n"; | |
} | |
} | |
/* Install docstring */ | |
PyCFunctionObject *func = (PyCFunctionObject *) m_ptr; | |
if (func->m_ml->ml_doc) | |
std::free(const_cast<char *>(func->m_ml->ml_doc)); | |
func->m_ml->ml_doc = strdup(signatures.c_str()); | |
if (rec->is_method) { | |
m_ptr = PYBIND11_INSTANCE_METHOD_NEW(m_ptr, rec->scope.ptr()); | |
if (!m_ptr) | |
pybind11_fail("cpp_function::cpp_function(): Could not allocate instance method object"); | |
Py_DECREF(func); | |
} | |
} | |
/// When a cpp_function is GCed, release any memory allocated by pybind11 | |
static void destruct(detail::function_record *rec) { | |
while (rec) { | |
detail::function_record *next = rec->next; | |
if (rec->free_data) | |
rec->free_data(rec); | |
std::free((char *) rec->name); | |
std::free((char *) rec->doc); | |
std::free((char *) rec->signature); | |
for (auto &arg: rec->args) { | |
std::free(const_cast<char *>(arg.name)); | |
std::free(const_cast<char *>(arg.descr)); | |
arg.value.dec_ref(); | |
} | |
if (rec->def) { | |
std::free(const_cast<char *>(rec->def->ml_doc)); | |
delete rec->def; | |
} | |
delete rec; | |
rec = next; | |
} | |
} | |
/// Main dispatch logic for calls to functions bound using pybind11 | |
static PyObject *dispatcher(PyObject *self, PyObject *args_in, PyObject *kwargs_in) { | |
using namespace detail; | |
/* Iterator over the list of potentially admissible overloads */ | |
const function_record *overloads = (function_record *) PyCapsule_GetPointer(self, nullptr), | |
*it = overloads; | |
/* Need to know how many arguments + keyword arguments there are to pick the right overload */ | |
const size_t n_args_in = (size_t) PyTuple_GET_SIZE(args_in); | |
handle parent = n_args_in > 0 ? PyTuple_GET_ITEM(args_in, 0) : nullptr, | |
result = PYBIND11_TRY_NEXT_OVERLOAD; | |
auto self_value_and_holder = value_and_holder(); | |
if (overloads->is_constructor) { | |
const auto tinfo = get_type_info((PyTypeObject *) overloads->scope.ptr()); | |
const auto pi = reinterpret_cast<instance *>(parent.ptr()); | |
self_value_and_holder = pi->get_value_and_holder(tinfo, false); | |
if (!self_value_and_holder.type || !self_value_and_holder.inst) { | |
PyErr_SetString(PyExc_TypeError, "__init__(self, ...) called with invalid `self` argument"); | |
return nullptr; | |
} | |
// If this value is already registered it must mean __init__ is invoked multiple times; | |
// we really can't support that in C++, so just ignore the second __init__. | |
if (self_value_and_holder.instance_registered()) | |
return none().release().ptr(); | |
} | |
try { | |
// We do this in two passes: in the first pass, we load arguments with `convert=false`; | |
// in the second, we allow conversion (except for arguments with an explicit | |
// py::arg().noconvert()). This lets us prefer calls without conversion, with | |
// conversion as a fallback. | |
std::vector<function_call> second_pass; | |
// However, if there are no overloads, we can just skip the no-convert pass entirely | |
const bool overloaded = it != nullptr && it->next != nullptr; | |
for (; it != nullptr; it = it->next) { | |
/* For each overload: | |
1. Copy all positional arguments we were given, also checking to make sure that | |
named positional arguments weren't *also* specified via kwarg. | |
2. If we weren't given enough, try to make up the omitted ones by checking | |
whether they were provided by a kwarg matching the `py::arg("name")` name. If | |
so, use it (and remove it from kwargs; if not, see if the function binding | |
provided a default that we can use. | |
3. Ensure that either all keyword arguments were "consumed", or that the function | |
takes a kwargs argument to accept unconsumed kwargs. | |
4. Any positional arguments still left get put into a tuple (for args), and any | |
leftover kwargs get put into a dict. | |
5. Pack everything into a vector; if we have py::args or py::kwargs, they are an | |
extra tuple or dict at the end of the positional arguments. | |
6. Call the function call dispatcher (function_record::impl) | |
If one of these fail, move on to the next overload and keep trying until we get a | |
result other than PYBIND11_TRY_NEXT_OVERLOAD. | |
*/ | |
const function_record &func = *it; | |
size_t num_args = func.nargs; // Number of positional arguments that we need | |
if (func.has_args) --num_args; // (but don't count py::args | |
if (func.has_kwargs) --num_args; // or py::kwargs) | |
size_t pos_args = num_args - func.nargs_kwonly; | |
if (!func.has_args && n_args_in > pos_args) | |
continue; // Too many positional arguments for this overload | |
if (n_args_in < pos_args && func.args.size() < pos_args) | |
continue; // Not enough positional arguments given, and not enough defaults to fill in the blanks | |
function_call call(func, parent); | |
size_t args_to_copy = (std::min)(pos_args, n_args_in); // Protect std::min with parentheses | |
size_t args_copied = 0; | |
// 0. Inject new-style `self` argument | |
if (func.is_new_style_constructor) { | |
// The `value` may have been preallocated by an old-style `__init__` | |
// if it was a preceding candidate for overload resolution. | |
if (self_value_and_holder) | |
self_value_and_holder.type->dealloc(self_value_and_holder); | |
call.init_self = PyTuple_GET_ITEM(args_in, 0); | |
call.args.push_back(reinterpret_cast<PyObject *>(&self_value_and_holder)); | |
call.args_convert.push_back(false); | |
++args_copied; | |
} | |
// 1. Copy any position arguments given. | |
bool bad_arg = false; | |
for (; args_copied < args_to_copy; ++args_copied) { | |
const argument_record *arg_rec = args_copied < func.args.size() ? &func.args[args_copied] : nullptr; | |
if (kwargs_in && arg_rec && arg_rec->name && PyDict_GetItemString(kwargs_in, arg_rec->name)) { | |
bad_arg = true; | |
break; | |
} | |
handle arg(PyTuple_GET_ITEM(args_in, args_copied)); | |
if (arg_rec && !arg_rec->none && arg.is_none()) { | |
bad_arg = true; | |
break; | |
} | |
call.args.push_back(arg); | |
call.args_convert.push_back(arg_rec ? arg_rec->convert : true); | |
} | |
if (bad_arg) | |
continue; // Maybe it was meant for another overload (issue #688) | |
// We'll need to copy this if we steal some kwargs for defaults | |
dict kwargs = reinterpret_borrow<dict>(kwargs_in); | |
// 2. Check kwargs and, failing that, defaults that may help complete the list | |
if (args_copied < num_args) { | |
bool copied_kwargs = false; | |
for (; args_copied < num_args; ++args_copied) { | |
const auto &arg = func.args[args_copied]; | |
handle value; | |
if (kwargs_in && arg.name) | |
value = PyDict_GetItemString(kwargs.ptr(), arg.name); | |
if (value) { | |
// Consume a kwargs value | |
if (!copied_kwargs) { | |
kwargs = reinterpret_steal<dict>(PyDict_Copy(kwargs.ptr())); | |
copied_kwargs = true; | |
} | |
PyDict_DelItemString(kwargs.ptr(), arg.name); | |
} else if (arg.value) { | |
value = arg.value; | |
} | |
if (value) { | |
call.args.push_back(value); | |
call.args_convert.push_back(arg.convert); | |
} | |
else | |
break; | |
} | |
if (args_copied < num_args) | |
continue; // Not enough arguments, defaults, or kwargs to fill the positional arguments | |
} | |
// 3. Check everything was consumed (unless we have a kwargs arg) | |
if (kwargs && kwargs.size() > 0 && !func.has_kwargs) | |
continue; // Unconsumed kwargs, but no py::kwargs argument to accept them | |
// 4a. If we have a py::args argument, create a new tuple with leftovers | |
if (func.has_args) { | |
tuple extra_args; | |
if (args_to_copy == 0) { | |
// We didn't copy out any position arguments from the args_in tuple, so we | |
// can reuse it directly without copying: | |
extra_args = reinterpret_borrow<tuple>(args_in); | |
} else if (args_copied >= n_args_in) { | |
extra_args = tuple(0); | |
} else { | |
size_t args_size = n_args_in - args_copied; | |
extra_args = tuple(args_size); | |
for (size_t i = 0; i < args_size; ++i) { | |
extra_args[i] = PyTuple_GET_ITEM(args_in, args_copied + i); | |
} | |
} | |
call.args.push_back(extra_args); | |
call.args_convert.push_back(false); | |
call.args_ref = std::move(extra_args); | |
} | |
// 4b. If we have a py::kwargs, pass on any remaining kwargs | |
if (func.has_kwargs) { | |
if (!kwargs.ptr()) | |
kwargs = dict(); // If we didn't get one, send an empty one | |
call.args.push_back(kwargs); | |
call.args_convert.push_back(false); | |
call.kwargs_ref = std::move(kwargs); | |
} | |
// 5. Put everything in a vector. Not technically step 5, we've been building it | |
// in `call.args` all along. | |
if (call.args.size() != func.nargs || call.args_convert.size() != func.nargs) | |
pybind11_fail("Internal error: function call dispatcher inserted wrong number of arguments!"); | |
std::vector<bool> second_pass_convert; | |
if (overloaded) { | |
// We're in the first no-convert pass, so swap out the conversion flags for a | |
// set of all-false flags. If the call fails, we'll swap the flags back in for | |
// the conversion-allowed call below. | |
second_pass_convert.resize(func.nargs, false); | |
call.args_convert.swap(second_pass_convert); | |
} | |
// 6. Call the function. | |
try { | |
loader_life_support guard{}; | |
result = func.impl(call); | |
} catch (reference_cast_error &) { | |
result = PYBIND11_TRY_NEXT_OVERLOAD; | |
} | |
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) | |
break; | |
if (overloaded) { | |
// The (overloaded) call failed; if the call has at least one argument that | |
// permits conversion (i.e. it hasn't been explicitly specified `.noconvert()`) | |
// then add this call to the list of second pass overloads to try. | |
for (size_t i = func.is_method ? 1 : 0; i < pos_args; i++) { | |
if (second_pass_convert[i]) { | |
// Found one: swap the converting flags back in and store the call for | |
// the second pass. | |
call.args_convert.swap(second_pass_convert); | |
second_pass.push_back(std::move(call)); | |
break; | |
} | |
} | |
} | |
} | |
if (overloaded && !second_pass.empty() && result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { | |
// The no-conversion pass finished without success, try again with conversion allowed | |
for (auto &call : second_pass) { | |
try { | |
loader_life_support guard{}; | |
result = call.func.impl(call); | |
} catch (reference_cast_error &) { | |
result = PYBIND11_TRY_NEXT_OVERLOAD; | |
} | |
if (result.ptr() != PYBIND11_TRY_NEXT_OVERLOAD) { | |
// The error reporting logic below expects 'it' to be valid, as it would be | |
// if we'd encountered this failure in the first-pass loop. | |
if (!result) | |
it = &call.func; | |
break; | |
} | |
} | |
} | |
} catch (error_already_set &e) { | |
e.restore(); | |
return nullptr; | |
} catch ( abi::__forced_unwind& ) { | |
throw; | |
} catch (...) { | |
/* When an exception is caught, give each registered exception | |
translator a chance to translate it to a Python exception | |
in reverse order of registration. | |
A translator may choose to do one of the following: | |
- catch the exception and call PyErr_SetString or PyErr_SetObject | |
to set a standard (or custom) Python exception, or | |
- do nothing and let the exception fall through to the next translator, or | |
- delegate translation to the next translator by throwing a new type of exception. */ | |
auto last_exception = std::current_exception(); | |
auto ®istered_exception_translators = get_internals().registered_exception_translators; | |
for (auto& translator : registered_exception_translators) { | |
try { | |
translator(last_exception); | |
} catch (...) { | |
last_exception = std::current_exception(); | |
continue; | |
} | |
return nullptr; | |
} | |
PyErr_SetString(PyExc_SystemError, "Exception escaped from default exception translator!"); | |
return nullptr; | |
} | |
auto append_note_if_missing_header_is_suspected = [](std::string &msg) { | |
if (msg.find("std::") != std::string::npos) { | |
msg += "\n\n" | |
"Did you forget to `#include <pybind11/stl.h>`? Or <pybind11/complex.h>,\n" | |
"<pybind11/functional.h>, <pybind11/chrono.h>, etc. Some automatic\n" | |
"conversions are optional and require extra headers to be included\n" | |
"when compiling your pybind11 module."; | |
} | |
}; | |
if (result.ptr() == PYBIND11_TRY_NEXT_OVERLOAD) { | |
if (overloads->is_operator) | |
return handle(Py_NotImplemented).inc_ref().ptr(); | |
std::string msg = std::string(overloads->name) + "(): incompatible " + | |
std::string(overloads->is_constructor ? "constructor" : "function") + | |
" arguments. The following argument types are supported:\n"; | |
int ctr = 0; | |
for (const function_record *it2 = overloads; it2 != nullptr; it2 = it2->next) { | |
msg += " "+ std::to_string(++ctr) + ". "; | |
bool wrote_sig = false; | |
if (overloads->is_constructor) { | |
// For a constructor, rewrite `(self: Object, arg0, ...) -> NoneType` as `Object(arg0, ...)` | |
std::string sig = it2->signature; | |
size_t start = sig.find('(') + 7; // skip "(self: " | |
if (start < sig.size()) { | |
// End at the , for the next argument | |
size_t end = sig.find(", "), next = end + 2; | |
size_t ret = sig.rfind(" -> "); | |
// Or the ), if there is no comma: | |
if (end >= sig.size()) next = end = sig.find(')'); | |
if (start < end && next < sig.size()) { | |
msg.append(sig, start, end - start); | |
msg += '('; | |
msg.append(sig, next, ret - next); | |
wrote_sig = true; | |
} | |
} | |
} | |
if (!wrote_sig) msg += it2->signature; | |
msg += "\n"; | |
} | |
msg += "\nInvoked with: "; | |
auto args_ = reinterpret_borrow<tuple>(args_in); | |
bool some_args = false; | |
for (size_t ti = overloads->is_constructor ? 1 : 0; ti < args_.size(); ++ti) { | |
if (!some_args) some_args = true; | |
else msg += ", "; | |
try { | |
msg += pybind11::repr(args_[ti]); | |
} catch (const error_already_set&) { | |
msg += "<repr raised Error>"; | |
} | |
} | |
if (kwargs_in) { | |
auto kwargs = reinterpret_borrow<dict>(kwargs_in); | |
if (kwargs.size() > 0) { | |
if (some_args) msg += "; "; | |
msg += "kwargs: "; | |
bool first = true; | |
for (auto kwarg : kwargs) { | |
if (first) first = false; | |
else msg += ", "; | |
msg += pybind11::str("{}=").format(kwarg.first); | |
try { | |
msg += pybind11::repr(kwarg.second); | |
} catch (const error_already_set&) { | |
msg += "<repr raised Error>"; | |
} | |
} | |
} | |
} | |
append_note_if_missing_header_is_suspected(msg); | |
PyErr_SetString(PyExc_TypeError, msg.c_str()); | |
return nullptr; | |
} else if (!result) { | |
std::string msg = "Unable to convert function return value to a " | |
"Python type! The signature was\n\t"; | |
msg += it->signature; | |
append_note_if_missing_header_is_suspected(msg); | |
PyErr_SetString(PyExc_TypeError, msg.c_str()); | |
return nullptr; | |
} else { | |
if (overloads->is_constructor && !self_value_and_holder.holder_constructed()) { | |
auto *pi = reinterpret_cast<instance *>(parent.ptr()); | |
self_value_and_holder.type->init_instance(pi, nullptr); | |
} | |
return result.ptr(); | |
} | |
} | |
}; | |
/// Wrapper for Python extension modules | |
class module : public object { | |
public: | |
PYBIND11_OBJECT_DEFAULT(module, object, PyModule_Check) | |
/// Create a new top-level Python module with the given name and docstring | |
explicit module(const char *name, const char *doc = nullptr) { | |
if (!options::show_user_defined_docstrings()) doc = nullptr; | |
PyModuleDef *def = new PyModuleDef(); | |
std::memset(def, 0, sizeof(PyModuleDef)); | |
def->m_name = name; | |
def->m_doc = doc; | |
def->m_size = -1; | |
Py_INCREF(def); | |
m_ptr = PyModule_Create(def); | |
m_ptr = Py_InitModule3(name, nullptr, doc); | |
if (m_ptr == nullptr) | |
pybind11_fail("Internal error in module::module()"); | |
inc_ref(); | |
} | |
/** \rst | |
Create Python binding for a new function within the module scope. ``Func`` | |
can be a plain C++ function, a function pointer, or a lambda function. For | |
details on the ``Extra&& ... extra`` argument, see section :ref:`extras`. | |
\endrst */ | |
template <typename Func, typename... Extra> | |
module &def(const char *name_, Func &&f, const Extra& ... extra) { | |
cpp_function func(std::forward<Func>(f), name(name_), scope(*this), | |
sibling(getattr(*this, name_, none())), extra...); | |
// NB: allow overwriting here because cpp_function sets up a chain with the intention of | |
// overwriting (and has already checked internally that it isn't overwriting non-functions). | |
add_object(name_, func, true /* overwrite */); | |
return *this; | |
} | |
/** \rst | |
Create and return a new Python submodule with the given name and docstring. | |
This also works recursively, i.e. | |
.. code-block:: cpp | |
py::module m("example", "pybind11 example plugin"); | |
py::module m2 = m.def_submodule("sub", "A submodule of 'example'"); | |
py::module m3 = m2.def_submodule("subsub", "A submodule of 'example.sub'"); | |
\endrst */ | |
module def_submodule(const char *name, const char *doc = nullptr) { | |
std::string full_name = std::string(PyModule_GetName(m_ptr)) | |
+ std::string(".") + std::string(name); | |
auto result = reinterpret_borrow<module>(PyImport_AddModule(full_name.c_str())); | |
if (doc && options::show_user_defined_docstrings()) | |
result.attr("__doc__") = pybind11::str(doc); | |
attr(name) = result; | |
return result; | |
} | |
/// Import and return a module or throws `error_already_set`. | |
static module import(const char *name) { | |
PyObject *obj = PyImport_ImportModule(name); | |
if (!obj) | |
throw error_already_set(); | |
return reinterpret_steal<module>(obj); | |
} | |
/// Reload the module or throws `error_already_set`. | |
void reload() { | |
PyObject *obj = PyImport_ReloadModule(ptr()); | |
if (!obj) | |
throw error_already_set(); | |
*this = reinterpret_steal<module>(obj); | |
} | |
// Adds an object to the module using the given name. Throws if an object with the given name | |
// already exists. | |
// | |
// overwrite should almost always be false: attempting to overwrite objects that pybind11 has | |
// established will, in most cases, break things. | |
PYBIND11_NOINLINE void add_object(const char *name, handle obj, bool overwrite = false) { | |
if (!overwrite && hasattr(*this, name)) | |
pybind11_fail("Error during initialization: multiple incompatible definitions with name \"" + | |
std::string(name) + "\""); | |
PyModule_AddObject(ptr(), name, obj.inc_ref().ptr() /* steals a reference */); | |
} | |
}; | |
/// \ingroup python_builtins | |
/// Return a dictionary representing the global variables in the current execution frame, | |
/// or ``__main__.__dict__`` if there is no frame (usually when the interpreter is embedded). | |
inline dict globals() { | |
PyObject *p = PyEval_GetGlobals(); | |
return reinterpret_borrow<dict>(p ? p : module::import("__main__").attr("__dict__").ptr()); | |
} | |
PYBIND11_NAMESPACE_BEGIN(detail) | |
/// Generic support for creating new Python heap types | |
class generic_type : public object { | |
template <typename...> friend class class_; | |
public: | |
PYBIND11_OBJECT_DEFAULT(generic_type, object, PyType_Check) | |
protected: | |
void initialize(const type_record &rec) { | |
if (rec.scope && hasattr(rec.scope, rec.name)) | |
pybind11_fail("generic_type: cannot initialize type \"" + std::string(rec.name) + | |
"\": an object with that name is already defined"); | |
if (rec.module_local ? get_local_type_info(*rec.type) : get_global_type_info(*rec.type)) | |
pybind11_fail("generic_type: type \"" + std::string(rec.name) + | |
"\" is already registered!"); | |
m_ptr = make_new_python_type(rec); | |
/* Register supplemental type information in C++ dict */ | |
auto *tinfo = new detail::type_info(); | |
tinfo->type = (PyTypeObject *) m_ptr; | |
tinfo->cpptype = rec.type; | |
tinfo->type_size = rec.type_size; | |
tinfo->type_align = rec.type_align; | |
tinfo->operator_new = rec.operator_new; | |
tinfo->holder_size_in_ptrs = size_in_ptrs(rec.holder_size); | |
tinfo->init_instance = rec.init_instance; | |
tinfo->dealloc = rec.dealloc; | |
tinfo->simple_type = true; | |
tinfo->simple_ancestors = true; | |
tinfo->default_holder = rec.default_holder; | |
tinfo->module_local = rec.module_local; | |
auto &internals = get_internals(); | |
auto tindex = std::type_index(*rec.type); | |
tinfo->direct_conversions = &internals.direct_conversions[tindex]; | |
if (rec.module_local) | |
registered_local_types_cpp()[tindex] = tinfo; | |
else | |
internals.registered_types_cpp[tindex] = tinfo; | |
internals.registered_types_py[(PyTypeObject *) m_ptr] = { tinfo }; | |
if (rec.bases.size() > 1 || rec.multiple_inheritance) { | |
mark_parents_nonsimple(tinfo->type); | |
tinfo->simple_ancestors = false; | |
} | |
else if (rec.bases.size() == 1) { | |
auto parent_tinfo = get_type_info((PyTypeObject *) rec.bases[0].ptr()); | |
tinfo->simple_ancestors = parent_tinfo->simple_ancestors; | |
} | |
if (rec.module_local) { | |
// Stash the local typeinfo and loader so that external modules can access it. | |
tinfo->module_local_load = &type_caster_generic::local_load; | |
setattr(m_ptr, PYBIND11_MODULE_LOCAL_ID, capsule(tinfo)); | |
} | |
} | |
/// Helper function which tags all parents of a type using mult. inheritance | |
void mark_parents_nonsimple(PyTypeObject *value) { | |
auto t = reinterpret_borrow<tuple>(value->tp_bases); | |
for (handle h : t) { | |
auto tinfo2 = get_type_info((PyTypeObject *) h.ptr()); | |
if (tinfo2) | |
tinfo2->simple_type = false; | |
mark_parents_nonsimple((PyTypeObject *) h.ptr()); | |
} | |
} | |
void install_buffer_funcs( | |
buffer_info *(*get_buffer)(PyObject *, void *), | |
void *get_buffer_data) { | |
PyHeapTypeObject *type = (PyHeapTypeObject*) m_ptr; | |
auto tinfo = detail::get_type_info(&type->ht_type); | |
if (!type->ht_type.tp_as_buffer) | |
pybind11_fail( | |
"To be able to register buffer protocol support for the type '" + | |
std::string(tinfo->type->tp_name) + | |
"' the associated class<>(..) invocation must " | |
"include the pybind11::buffer_protocol() annotation!"); | |
tinfo->get_buffer = get_buffer; | |
tinfo->get_buffer_data = get_buffer_data; | |
} | |
// rec_func must be set for either fget or fset. | |
void def_property_static_impl(const char *name, | |
handle fget, handle fset, | |
detail::function_record *rec_func) { | |
const auto is_static = rec_func && !(rec_func->is_method && rec_func->scope); | |
const auto has_doc = rec_func && rec_func->doc && pybind11::options::show_user_defined_docstrings(); | |
auto property = handle((PyObject *) (is_static ? get_internals().static_property_type | |
: &PyProperty_Type)); | |
attr(name) = property(fget.ptr() ? fget : none(), | |
fset.ptr() ? fset : none(), | |
/*deleter*/none(), | |
pybind11::str(has_doc ? rec_func->doc : "")); | |
} | |
}; | |
/// Set the pointer to operator new if it exists. The cast is needed because it can be overloaded. | |
template <typename T, typename = void_t<decltype(static_cast<void *(*)(size_t)>(T::operator new))>> | |
void set_operator_new(type_record *r) { r->operator_new = &T::operator new; } | |
template <typename> void set_operator_new(...) { } | |
template <typename T, typename SFINAE = void> struct has_operator_delete : std::false_type { }; | |
template <typename T> struct has_operator_delete<T, void_t<decltype(static_cast<void (*)(void *)>(T::operator delete))>> | |
: std::true_type { }; | |
template <typename T, typename SFINAE = void> struct has_operator_delete_size : std::false_type { }; | |
template <typename T> struct has_operator_delete_size<T, void_t<decltype(static_cast<void (*)(void *, size_t)>(T::operator delete))>> | |
: std::true_type { }; | |
/// Call class-specific delete if it exists or global otherwise. Can also be an overload set. | |
template <typename T, enable_if_t<has_operator_delete<T>::value, int> = 0> | |
void call_operator_delete(T *p, size_t, size_t) { T::operator delete(p); } | |
template <typename T, enable_if_t<!has_operator_delete<T>::value && has_operator_delete_size<T>::value, int> = 0> | |
void call_operator_delete(T *p, size_t s, size_t) { T::operator delete(p, s); } | |
inline void call_operator_delete(void *p, size_t s, size_t a) { | |
(void)s; (void)a; | |
if (a > __STDCPP_DEFAULT_NEW_ALIGNMENT__) { | |
::operator delete(p, s, std::align_val_t(a)); | |
::operator delete(p, std::align_val_t(a)); | |
return; | |
} | |
::operator delete(p, s); | |
::operator delete(p); | |
} | |
inline void add_class_method(object& cls, const char *name_, const cpp_function &cf) { | |
cls.attr(cf.name()) = cf; | |
if (strcmp(name_, "__eq__") == 0 && !cls.attr("__dict__").contains("__hash__")) { | |
cls.attr("__hash__") = none(); | |
} | |
} | |
PYBIND11_NAMESPACE_END(detail) | |
/// Given a pointer to a member function, cast it to its `Derived` version. | |
/// Forward everything else unchanged. | |
template <typename /*Derived*/, typename F> | |
auto method_adaptor(F &&f) -> decltype(std::forward<F>(f)) { return std::forward<F>(f); } | |
template <typename Derived, typename Return, typename Class, typename... Args> | |
auto method_adaptor(Return (Class::*pmf)(Args...)) -> Return (Derived::*)(Args...) { | |
static_assert(detail::is_accessible_base_of<Class, Derived>::value, | |
"Cannot bind an inaccessible base class method; use a lambda definition instead"); | |
return pmf; | |
} | |
template <typename Derived, typename Return, typename Class, typename... Args> | |
auto method_adaptor(Return (Class::*pmf)(Args...) const) -> Return (Derived::*)(Args...) const { | |
static_assert(detail::is_accessible_base_of<Class, Derived>::value, | |
"Cannot bind an inaccessible base class method; use a lambda definition instead"); | |
return pmf; | |
} | |
template <typename type_, typename... options> | |
class class_ : public detail::generic_type { | |
template <typename T> using is_holder = detail::is_holder_type<type_, T>; | |
template <typename T> using is_subtype = detail::is_strict_base_of<type_, T>; | |
template <typename T> using is_base = detail::is_strict_base_of<T, type_>; | |
// struct instead of using here to help MSVC: | |
template <typename T> struct is_valid_class_option : | |
detail::any_of<is_holder<T>, is_subtype<T>, is_base<T>> {}; | |
public: | |
using type = type_; | |
using type_alias = detail::exactly_one_t<is_subtype, void, options...>; | |
constexpr static bool has_alias = !std::is_void<type_alias>::value; | |
using holder_type = detail::exactly_one_t<is_holder, std::unique_ptr<type>, options...>; | |
static_assert(detail::all_of<is_valid_class_option<options>...>::value, | |
"Unknown/invalid class_ template parameters provided"); | |
static_assert(!has_alias || std::is_polymorphic<type>::value, | |
"Cannot use an alias class with a non-polymorphic type"); | |
PYBIND11_OBJECT(class_, generic_type, PyType_Check) | |
template <typename... Extra> | |
class_(handle scope, const char *name, const Extra &... extra) { | |
using namespace detail; | |
// MI can only be specified via class_ template options, not constructor parameters | |
static_assert( | |
none_of<is_pyobject<Extra>...>::value || // no base class arguments, or: | |
( constexpr_sum(is_pyobject<Extra>::value...) == 1 && // Exactly one base | |
constexpr_sum(is_base<options>::value...) == 0 && // no template option bases | |
none_of<std::is_same<multiple_inheritance, Extra>...>::value), // no multiple_inheritance attr | |
"Error: multiple inheritance bases must be specified via class_ template options"); | |
type_record record; | |
record.scope = scope; | |
record.name = name; | |
record.type = &typeid(type); | |
record.type_size = sizeof(conditional_t<has_alias, type_alias, type>); | |
record.type_align = alignof(conditional_t<has_alias, type_alias, type>&); | |
record.holder_size = sizeof(holder_type); | |
record.init_instance = init_instance; | |
record.dealloc = dealloc; | |
record.default_holder = detail::is_instantiation<std::unique_ptr, holder_type>::value; | |
set_operator_new<type>(&record); | |
/* Register base classes specified via template arguments to class_, if any */ | |
PYBIND11_EXPAND_SIDE_EFFECTS(add_base<options>(record)); | |
/* Process optional arguments, if any */ | |
process_attributes<Extra...>::init(extra..., &record); | |
generic_type::initialize(record); | |
if (has_alias) { | |
auto &instances = record.module_local ? registered_local_types_cpp() : get_internals().registered_types_cpp; | |
instances[std::type_index(typeid(type_alias))] = instances[std::type_index(typeid(type))]; | |
} | |
} | |
template <typename Base, detail::enable_if_t<is_base<Base>::value, int> = 0> | |
static void add_base(detail::type_record &rec) { | |
rec.add_base(typeid(Base), [](void *src) -> void * { | |
return static_cast<Base *>(reinterpret_cast<type *>(src)); | |
}); | |
} | |
template <typename Base, detail::enable_if_t<!is_base<Base>::value, int> = 0> | |
static void add_base(detail::type_record &) { } | |
template <typename Func, typename... Extra> | |
class_ &def(const char *name_, Func&& f, const Extra&... extra) { | |
cpp_function cf(method_adaptor<type>(std::forward<Func>(f)), name(name_), is_method(*this), | |
sibling(getattr(*this, name_, none())), extra...); | |
add_class_method(*this, name_, cf); | |
return *this; | |
} | |
template <typename Func, typename... Extra> class_ & | |
def_static(const char *name_, Func &&f, const Extra&... extra) { | |
static_assert(!std::is_member_function_pointer<Func>::value, | |
"def_static(...) called with a non-static member function pointer"); | |
cpp_function cf(std::forward<Func>(f), name(name_), scope(*this), | |
sibling(getattr(*this, name_, none())), extra...); | |
attr(cf.name()) = staticmethod(cf); | |
return *this; | |
} | |
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> | |
class_ &def(const detail::op_<id, ot, L, R> &op, const Extra&... extra) { | |
op.execute(*this, extra...); | |
return *this; | |
} | |
template <detail::op_id id, detail::op_type ot, typename L, typename R, typename... Extra> | |
class_ & def_cast(const detail::op_<id, ot, L, R> &op, const Extra&... extra) { | |
op.execute_cast(*this, extra...); | |
return *this; | |
} | |
template <typename... Args, typename... Extra> | |
class_ &def(const detail::initimpl::constructor<Args...> &init, const Extra&... extra) { | |
init.execute(*this, extra...); | |
return *this; | |
} | |
template <typename... Args, typename... Extra> | |
class_ &def(const detail::initimpl::alias_constructor<Args...> &init, const Extra&... extra) { | |
init.execute(*this, extra...); | |
return *this; | |
} | |
template <typename... Args, typename... Extra> | |
class_ &def(detail::initimpl::factory<Args...> &&init, const Extra&... extra) { | |
std::move(init).execute(*this, extra...); | |
return *this; | |
} | |
template <typename... Args, typename... Extra> | |
class_ &def(detail::initimpl::pickle_factory<Args...> &&pf, const Extra &...extra) { | |
std::move(pf).execute(*this, extra...); | |
return *this; | |
} | |
template <typename Func> class_& def_buffer(Func &&func) { | |
struct capture { Func func; }; | |
capture *ptr = new capture { std::forward<Func>(func) }; | |
install_buffer_funcs([](PyObject *obj, void *ptr) -> buffer_info* { | |
detail::make_caster<type> caster; | |
if (!caster.load(obj, false)) | |
return nullptr; | |
return new buffer_info(((capture *) ptr)->func(caster)); | |
}, ptr); | |
return *this; | |
} | |
template <typename Return, typename Class, typename... Args> | |
class_ &def_buffer(Return (Class::*func)(Args...)) { | |
return def_buffer([func] (type &obj) { return (obj.*func)(); }); | |
} | |
template <typename Return, typename Class, typename... Args> | |
class_ &def_buffer(Return (Class::*func)(Args...) const) { | |
return def_buffer([func] (const type &obj) { return (obj.*func)(); }); | |
} | |
template <typename C, typename D, typename... Extra> | |
class_ &def_readwrite(const char *name, D C::*pm, const Extra&... extra) { | |
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value, "def_readwrite() requires a class member (or base class member)"); | |
cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)), | |
fset([pm](type &c, const D &value) { c.*pm = value; }, is_method(*this)); | |
def_property(name, fget, fset, return_value_policy::reference_internal, extra...); | |
return *this; | |
} | |
template <typename C, typename D, typename... Extra> | |
class_ &def_readonly(const char *name, const D C::*pm, const Extra& ...extra) { | |
static_assert(std::is_same<C, type>::value || std::is_base_of<C, type>::value, "def_readonly() requires a class member (or base class member)"); | |
cpp_function fget([pm](const type &c) -> const D &{ return c.*pm; }, is_method(*this)); | |
def_property_readonly(name, fget, return_value_policy::reference_internal, extra...); | |
return *this; | |
} | |
template <typename D, typename... Extra> | |
class_ &def_readwrite_static(const char *name, D *pm, const Extra& ...extra) { | |
cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)), | |
fset([pm](object, const D &value) { *pm = value; }, scope(*this)); | |
def_property_static(name, fget, fset, return_value_policy::reference, extra...); | |
return *this; | |
} | |
template <typename D, typename... Extra> | |
class_ &def_readonly_static(const char *name, const D *pm, const Extra& ...extra) { | |
cpp_function fget([pm](object) -> const D &{ return *pm; }, scope(*this)); | |
def_property_readonly_static(name, fget, return_value_policy::reference, extra...); | |
return *this; | |
} | |
/// Uses return_value_policy::reference_internal by default | |
template <typename Getter, typename... Extra> | |
class_ &def_property_readonly(const char *name, const Getter &fget, const Extra& ...extra) { | |
return def_property_readonly(name, cpp_function(method_adaptor<type>(fget)), | |
return_value_policy::reference_internal, extra...); | |
} | |
/// Uses cpp_function's return_value_policy by default | |
template <typename... Extra> | |
class_ &def_property_readonly(const char *name, const cpp_function &fget, const Extra& ...extra) { | |
return def_property(name, fget, nullptr, extra...); | |
} | |
/// Uses return_value_policy::reference by default | |
template <typename Getter, typename... Extra> | |
class_ &def_property_readonly_static(const char *name, const Getter &fget, const Extra& ...extra) { | |
return def_property_readonly_static(name, cpp_function(fget), return_value_policy::reference, extra...); | |
} | |
/// Uses cpp_function's return_value_policy by default | |
template <typename... Extra> | |
class_ &def_property_readonly_static(const char *name, const cpp_function &fget, const Extra& ...extra) { | |
return def_property_static(name, fget, nullptr, extra...); | |
} | |
/// Uses return_value_policy::reference_internal by default | |
template <typename Getter, typename Setter, typename... Extra> | |
class_ &def_property(const char *name, const Getter &fget, const Setter &fset, const Extra& ...extra) { | |
return def_property(name, fget, cpp_function(method_adaptor<type>(fset)), extra...); | |
} | |
template <typename Getter, typename... Extra> | |
class_ &def_property(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { | |
return def_property(name, cpp_function(method_adaptor<type>(fget)), fset, | |
return_value_policy::reference_internal, extra...); | |
} | |
/// Uses cpp_function's return_value_policy by default | |
template <typename... Extra> | |
class_ &def_property(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { | |
return def_property_static(name, fget, fset, is_method(*this), extra...); | |
} | |
/// Uses return_value_policy::reference by default | |
template <typename Getter, typename... Extra> | |
class_ &def_property_static(const char *name, const Getter &fget, const cpp_function &fset, const Extra& ...extra) { | |
return def_property_static(name, cpp_function(fget), fset, return_value_policy::reference, extra...); | |
} | |
/// Uses cpp_function's return_value_policy by default | |
template <typename... Extra> | |
class_ &def_property_static(const char *name, const cpp_function &fget, const cpp_function &fset, const Extra& ...extra) { | |
static_assert( 0 == detail::constexpr_sum(std::is_base_of<arg, Extra>::value...), | |
"Argument annotations are not allowed for properties"); | |
auto rec_fget = get_function_record(fget), rec_fset = get_function_record(fset); | |
auto *rec_active = rec_fget; | |
if (rec_fget) { | |
char *doc_prev = rec_fget->doc; /* 'extra' field may include a property-specific documentation string */ | |
detail::process_attributes<Extra...>::init(extra..., rec_fget); | |
if (rec_fget->doc && rec_fget->doc != doc_prev) { | |
free(doc_prev); | |
rec_fget->doc = strdup(rec_fget->doc); | |
} | |
} | |
if (rec_fset) { | |
char *doc_prev = rec_fset->doc; | |
detail::process_attributes<Extra...>::init(extra..., rec_fset); | |
if (rec_fset->doc && rec_fset->doc != doc_prev) { | |
free(doc_prev); | |
rec_fset->doc = strdup(rec_fset->doc); | |
} | |
if (! rec_active) rec_active = rec_fset; | |
} | |
def_property_static_impl(name, fget, fset, rec_active); | |
return *this; | |
} | |
private: | |
/// Initialize holder object, variant 1: object derives from enable_shared_from_this | |
template <typename T> | |
static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, | |
const holder_type * /* unused */, const std::enable_shared_from_this<T> * /* dummy */) { | |
try { | |
auto sh = std::dynamic_pointer_cast<typename holder_type::element_type>( | |
v_h.value_ptr<type>()->shared_from_this()); | |
if (sh) { | |
new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(sh)); | |
v_h.set_holder_constructed(); | |
} | |
} catch (const std::bad_weak_ptr &) {} | |
if (!v_h.holder_constructed() && inst->owned) { | |
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>()); | |
v_h.set_holder_constructed(); | |
} | |
} | |
static void init_holder_from_existing(const detail::value_and_holder &v_h, | |
const holder_type *holder_ptr, std::true_type /*is_copy_constructible*/) { | |
new (std::addressof(v_h.holder<holder_type>())) holder_type(*reinterpret_cast<const holder_type *>(holder_ptr)); | |
} | |
static void init_holder_from_existing(const detail::value_and_holder &v_h, | |
const holder_type *holder_ptr, std::false_type /*is_copy_constructible*/) { | |
new (std::addressof(v_h.holder<holder_type>())) holder_type(std::move(*const_cast<holder_type *>(holder_ptr))); | |
} | |
/// Initialize holder object, variant 2: try to construct from existing holder object, if possible | |
static void init_holder(detail::instance *inst, detail::value_and_holder &v_h, | |
const holder_type *holder_ptr, const void * /* dummy -- not enable_shared_from_this<T>) */) { | |
if (holder_ptr) { | |
init_holder_from_existing(v_h, holder_ptr, std::is_copy_constructible<holder_type>()); | |
v_h.set_holder_constructed(); | |
} else if (inst->owned || detail::always_construct_holder<holder_type>::value) { | |
new (std::addressof(v_h.holder<holder_type>())) holder_type(v_h.value_ptr<type>()); | |
v_h.set_holder_constructed(); | |
} | |
} | |
/// Performs instance initialization including constructing a holder and registering the known | |
/// instance. Should be called as soon as the `type` value_ptr is set for an instance. Takes an | |
/// optional pointer to an existing holder to use; if not specified and the instance is | |
/// `.owned`, a new holder will be constructed to manage the value pointer. | |
static void init_instance(detail::instance *inst, const void *holder_ptr) { | |
auto v_h = inst->get_value_and_holder(detail::get_type_info(typeid(type))); | |
if (!v_h.instance_registered()) { | |
register_instance(inst, v_h.value_ptr(), v_h.type); | |
v_h.set_instance_registered(); | |
} | |
init_holder(inst, v_h, (const holder_type *) holder_ptr, v_h.value_ptr<type>()); | |
} | |
/// Deallocates an instance; via holder, if constructed; otherwise via operator delete. | |
static void dealloc(detail::value_and_holder &v_h) { | |
// We could be deallocating because we are cleaning up after a Python exception. | |
// If so, the Python error indicator will be set. We need to clear that before | |
// running the destructor, in case the destructor code calls more Python. | |
// If we don't, the Python API will exit with an exception, and pybind11 will | |
// throw error_already_set from the C++ destructor which is forbidden and triggers | |
// std::terminate(). | |
error_scope scope; | |
if (v_h.holder_constructed()) { | |
v_h.holder<holder_type>().~holder_type(); | |
v_h.set_holder_constructed(false); | |
} | |
else { | |
detail::call_operator_delete(v_h.value_ptr<type>(), | |
v_h.type->type_size, | |
v_h.type->type_align | |
); | |
} | |
v_h.value_ptr() = nullptr; | |
} | |
static detail::function_record *get_function_record(handle h) { | |
h = detail::get_function(h); | |
return h ? (detail::function_record *) reinterpret_borrow<capsule>(PyCFunction_GET_SELF(h.ptr())) | |
: nullptr; | |
} | |
}; | |
/// Binds an existing constructor taking arguments Args... | |
template <typename... Args> detail::initimpl::constructor<Args...> init() { return {}; } | |
/// Like `init<Args...>()`, but the instance is always constructed through the alias class (even | |
/// when not inheriting on the Python side). | |
template <typename... Args> detail::initimpl::alias_constructor<Args...> init_alias() { return {}; } | |
/// Binds a factory function as a constructor | |
template <typename Func, typename Ret = detail::initimpl::factory<Func>> | |
Ret init(Func &&f) { return {std::forward<Func>(f)}; } | |
/// Dual-argument factory function: the first function is called when no alias is needed, the second | |
/// when an alias is needed (i.e. due to python-side inheritance). Arguments must be identical. | |
template <typename CFunc, typename AFunc, typename Ret = detail::initimpl::factory<CFunc, AFunc>> | |
Ret init(CFunc &&c, AFunc &&a) { | |
return {std::forward<CFunc>(c), std::forward<AFunc>(a)}; | |
} | |
/// Binds pickling functions `__getstate__` and `__setstate__` and ensures that the type | |
/// returned by `__getstate__` is the same as the argument accepted by `__setstate__`. | |
template <typename GetState, typename SetState> | |
detail::initimpl::pickle_factory<GetState, SetState> pickle(GetState &&g, SetState &&s) { | |
return {std::forward<GetState>(g), std::forward<SetState>(s)}; | |
} | |
PYBIND11_NAMESPACE_BEGIN(detail) | |
struct enum_base { | |
enum_base(handle base, handle parent) : m_base(base), m_parent(parent) { } | |
PYBIND11_NOINLINE void init(bool is_arithmetic, bool is_convertible) { | |
m_base.attr("__entries") = dict(); | |
auto property = handle((PyObject *) &PyProperty_Type); | |
auto static_property = handle((PyObject *) get_internals().static_property_type); | |
m_base.attr("__repr__") = cpp_function( | |
[](handle arg) -> str { | |
handle type = arg.get_type(); | |
object type_name = type.attr("__name__"); | |
dict entries = type.attr("__entries"); | |
for (const auto &kv : entries) { | |
object other = kv.second[int_(0)]; | |
if (other.equal(arg)) | |
return pybind11::str("{}.{}").format(type_name, kv.first); | |
} | |
return pybind11::str("{}.???").format(type_name); | |
}, name("__repr__"), is_method(m_base) | |
); | |
m_base.attr("name") = property(cpp_function( | |
[](handle arg) -> str { | |
dict entries = arg.get_type().attr("__entries"); | |
for (const auto &kv : entries) { | |
if (handle(kv.second[int_(0)]).equal(arg)) | |
return pybind11::str(kv.first); | |
} | |
return "???"; | |
}, name("name"), is_method(m_base) | |
)); | |
m_base.attr("__doc__") = static_property(cpp_function( | |
[](handle arg) -> std::string { | |
std::string docstring; | |
dict entries = arg.attr("__entries"); | |
if (((PyTypeObject *) arg.ptr())->tp_doc) | |
docstring += std::string(((PyTypeObject *) arg.ptr())->tp_doc) + "\n\n"; | |
docstring += "Members:"; | |
for (const auto &kv : entries) { | |
auto key = std::string(pybind11::str(kv.first)); | |
auto comment = kv.second[int_(1)]; | |
docstring += "\n\n " + key; | |
if (!comment.is_none()) | |
docstring += " : " + (std::string) pybind11::str(comment); | |
} | |
return docstring; | |
}, name("__doc__") | |
), none(), none(), ""); | |
m_base.attr("__members__") = static_property(cpp_function( | |
[](handle arg) -> dict { | |
dict entries = arg.attr("__entries"), m; | |
for (const auto &kv : entries) | |
m[kv.first] = kv.second[int_(0)]; | |
return m; | |
}, name("__members__")), none(), none(), "" | |
); | |
if (is_convertible) { | |
PYBIND11_ENUM_OP_CONV_LHS("__eq__", !b.is_none() && a.equal(b)); | |
PYBIND11_ENUM_OP_CONV_LHS("__ne__", b.is_none() || !a.equal(b)); | |
if (is_arithmetic) { | |
PYBIND11_ENUM_OP_CONV("__lt__", a < b); | |
PYBIND11_ENUM_OP_CONV("__gt__", a > b); | |
PYBIND11_ENUM_OP_CONV("__le__", a <= b); | |
PYBIND11_ENUM_OP_CONV("__ge__", a >= b); | |
PYBIND11_ENUM_OP_CONV("__and__", a & b); | |
PYBIND11_ENUM_OP_CONV("__rand__", a & b); | |
PYBIND11_ENUM_OP_CONV("__or__", a | b); | |
PYBIND11_ENUM_OP_CONV("__ror__", a | b); | |
PYBIND11_ENUM_OP_CONV("__xor__", a ^ b); | |
PYBIND11_ENUM_OP_CONV("__rxor__", a ^ b); | |
m_base.attr("__invert__") = cpp_function( | |
[](object arg) { return ~(int_(arg)); }, name("__invert__"), is_method(m_base)); | |
} | |
} else { | |
PYBIND11_ENUM_OP_STRICT("__eq__", int_(a).equal(int_(b)), return false); | |
PYBIND11_ENUM_OP_STRICT("__ne__", !int_(a).equal(int_(b)), return true); | |
if (is_arithmetic) { | |
PYBIND11_ENUM_OP_STRICT("__lt__", int_(a) < int_(b), PYBIND11_THROW); | |
PYBIND11_ENUM_OP_STRICT("__gt__", int_(a) > int_(b), PYBIND11_THROW); | |
PYBIND11_ENUM_OP_STRICT("__le__", int_(a) <= int_(b), PYBIND11_THROW); | |
PYBIND11_ENUM_OP_STRICT("__ge__", int_(a) >= int_(b), PYBIND11_THROW); | |
} | |
} | |
m_base.attr("__getstate__") = cpp_function( | |
[](object arg) { return int_(arg); }, name("__getstate__"), is_method(m_base)); | |
m_base.attr("__hash__") = cpp_function( | |
[](object arg) { return int_(arg); }, name("__hash__"), is_method(m_base)); | |
} | |
PYBIND11_NOINLINE void value(char const* name_, object value, const char *doc = nullptr) { | |
dict entries = m_base.attr("__entries"); | |
str name(name_); | |
if (entries.contains(name)) { | |
std::string type_name = (std::string) str(m_base.attr("__name__")); | |
throw value_error(type_name + ": element \"" + std::string(name_) + "\" already exists!"); | |
} | |
entries[name] = std::make_pair(value, doc); | |
m_base.attr(name) = value; | |
} | |
PYBIND11_NOINLINE void export_values() { | |
dict entries = m_base.attr("__entries"); | |
for (const auto &kv : entries) | |
m_parent.attr(kv.first) = kv.second[int_(0)]; | |
} | |
handle m_base; | |
handle m_parent; | |
}; | |
PYBIND11_NAMESPACE_END(detail) | |
/// Binds C++ enumerations and enumeration classes to Python | |
template <typename Type> class enum_ : public class_<Type> { | |
public: | |
using Base = class_<Type>; | |
using Base::def; | |
using Base::attr; | |
using Base::def_property_readonly; | |
using Base::def_property_readonly_static; | |
using Scalar = typename std::underlying_type<Type>::type; | |
template <typename... Extra> | |
enum_(const handle &scope, const char *name, const Extra&... extra) | |
: class_<Type>(scope, name, extra...), m_base(*this, scope) { | |
constexpr bool is_arithmetic = detail::any_of<std::is_same<arithmetic, Extra>...>::value; | |
constexpr bool is_convertible = std::is_convertible<Type, Scalar>::value; | |
m_base.init(is_arithmetic, is_convertible); | |
def(init([](Scalar i) { return static_cast<Type>(i); })); | |
def("__int__", [](Type value) { return (Scalar) value; }); | |
def("__long__", [](Type value) { return (Scalar) value; }); | |
def("__index__", [](Type value) { return (Scalar) value; }); | |
attr("__setstate__") = cpp_function( | |
[](detail::value_and_holder &v_h, Scalar arg) { | |
detail::initimpl::setstate<Base>(v_h, static_cast<Type>(arg), | |
Py_TYPE(v_h.inst) != v_h.type->type); }, | |
detail::is_new_style_constructor(), | |
pybind11::name("__setstate__"), is_method(*this)); | |
} | |
/// Export enumeration entries into the parent scope | |
enum_& export_values() { | |
m_base.export_values(); | |
return *this; | |
} | |
/// Add an enumeration entry | |
enum_& value(char const* name, Type value, const char *doc = nullptr) { | |
m_base.value(name, pybind11::cast(value, return_value_policy::copy), doc); | |
return *this; | |
} | |
private: | |
detail::enum_base m_base; | |
}; | |
PYBIND11_NAMESPACE_BEGIN(detail) | |
inline void keep_alive_impl(handle nurse, handle patient) { | |
if (!nurse || !patient) | |
pybind11_fail("Could not activate keep_alive!"); | |
if (patient.is_none() || nurse.is_none()) | |
return; /* Nothing to keep alive or nothing to be kept alive by */ | |
auto tinfo = all_type_info(Py_TYPE(nurse.ptr())); | |
if (!tinfo.empty()) { | |
/* It's a pybind-registered type, so we can store the patient in the | |
* internal list. */ | |
add_patient(nurse.ptr(), patient.ptr()); | |
} | |
else { | |
/* Fall back to clever approach based on weak references taken from | |
* Boost.Python. This is not used for pybind-registered types because | |
* the objects can be destroyed out-of-order in a GC pass. */ | |
cpp_function disable_lifesupport( | |
[patient](handle weakref) { patient.dec_ref(); weakref.dec_ref(); }); | |
weakref wr(nurse, disable_lifesupport); | |
patient.inc_ref(); /* reference patient and leak the weak reference */ | |
(void) wr.release(); | |
} | |
} | |
PYBIND11_NOINLINE inline void keep_alive_impl(size_t Nurse, size_t Patient, function_call &call, handle ret) { | |
auto get_arg = [&](size_t n) { | |
if (n == 0) | |
return ret; | |
else if (n == 1 && call.init_self) | |
return call.init_self; | |
else if (n <= call.args.size()) | |
return call.args[n - 1]; | |
return handle(); | |
}; | |
keep_alive_impl(get_arg(Nurse), get_arg(Patient)); | |
} | |
inline std::pair<decltype(internals::registered_types_py)::iterator, bool> all_type_info_get_cache(PyTypeObject *type) { | |
auto res = get_internals().registered_types_py | |
.try_emplace(type); | |
.emplace(type, std::vector<detail::type_info *>()); | |
if (res.second) { | |
// New cache entry created; set up a weak reference to automatically remove it if the type | |
// gets destroyed: | |
weakref((PyObject *) type, cpp_function([type](handle wr) { | |
get_internals().registered_types_py.erase(type); | |
wr.dec_ref(); | |
})).release(); | |
} | |
return res; | |
} | |
template <typename Iterator, typename Sentinel, bool KeyIterator, return_value_policy Policy> | |
struct iterator_state { | |
Iterator it; | |
Sentinel end; | |
bool first_or_done; | |
}; | |
PYBIND11_NAMESPACE_END(detail) | |
/// Makes a python iterator from a first and past-the-end C++ InputIterator. | |
template <return_value_policy Policy = return_value_policy::reference_internal, | |
typename Iterator, | |
typename Sentinel, | |
typename ValueType = decltype(*std::declval<Iterator>()), | |
typename... Extra> | |
iterator make_iterator(Iterator first, Sentinel last, Extra &&... extra) { | |
typedef detail::iterator_state<Iterator, Sentinel, false, Policy> state; | |
if (!detail::get_type_info(typeid(state), false)) { | |
class_<state>(handle(), "iterator", pybind11::module_local()) | |
.def("__iter__", [](state &s) -> state& { return s; }) | |
.def("__next__", [](state &s) -> ValueType { | |
if (!s.first_or_done) | |
++s.it; | |
else | |
s.first_or_done = false; | |
if (s.it == s.end) { | |
s.first_or_done = true; | |
throw stop_iteration(); | |
} | |
return *s.it; | |
}, std::forward<Extra>(extra)..., Policy); | |
} | |
return cast(state{first, last, true}); | |
} | |
/// Makes an python iterator over the keys (`.first`) of a iterator over pairs from a | |
/// first and past-the-end InputIterator. | |
template <return_value_policy Policy = return_value_policy::reference_internal, | |
typename Iterator, | |
typename Sentinel, | |
typename KeyType = decltype((*std::declval<Iterator>()).first), | |
typename... Extra> | |
iterator make_key_iterator(Iterator first, Sentinel last, Extra &&... extra) { | |
typedef detail::iterator_state<Iterator, Sentinel, true, Policy> state; | |
if (!detail::get_type_info(typeid(state), false)) { | |
class_<state>(handle(), "iterator", pybind11::module_local()) | |
.def("__iter__", [](state &s) -> state& { return s; }) | |
.def("__next__", [](state &s) -> KeyType { | |
if (!s.first_or_done) | |
++s.it; | |
else | |
s.first_or_done = false; | |
if (s.it == s.end) { | |
s.first_or_done = true; | |
throw stop_iteration(); | |
} | |
return (*s.it).first; | |
}, std::forward<Extra>(extra)..., Policy); | |
} | |
return cast(state{first, last, true}); | |
} | |
/// Makes an iterator over values of an stl container or other container supporting | |
/// `std::begin()`/`std::end()` | |
template <return_value_policy Policy = return_value_policy::reference_internal, | |
typename Type, typename... Extra> iterator make_iterator(Type &value, Extra&&... extra) { | |
return make_iterator<Policy>(std::begin(value), std::end(value), extra...); | |
} | |
/// Makes an iterator over the keys (`.first`) of a stl map-like container supporting | |
/// `std::begin()`/`std::end()` | |
template <return_value_policy Policy = return_value_policy::reference_internal, | |
typename Type, typename... Extra> iterator make_key_iterator(Type &value, Extra&&... extra) { | |
return make_key_iterator<Policy>(std::begin(value), std::end(value), extra...); | |
} | |
template <typename InputType, typename OutputType> void implicitly_convertible() { | |
struct set_flag { | |
bool &flag; | |
set_flag(bool &flag) : flag(flag) { flag = true; } | |
~set_flag() { flag = false; } | |
}; | |
auto implicit_caster = [](PyObject *obj, PyTypeObject *type) -> PyObject * { | |
static bool currently_used = false; | |
if (currently_used) // implicit conversions are non-reentrant | |
return nullptr; | |
set_flag flag_helper(currently_used); | |
if (!detail::make_caster<InputType>().load(obj, false)) | |
return nullptr; | |
tuple args(1); | |
args[0] = obj; | |
PyObject *result = PyObject_Call((PyObject *) type, args.ptr(), nullptr); | |
if (result == nullptr) | |
PyErr_Clear(); | |
return result; | |
}; | |
if (auto tinfo = detail::get_type_info(typeid(OutputType))) | |
tinfo->implicit_conversions.push_back(implicit_caster); | |
else | |
pybind11_fail("implicitly_convertible: Unable to find type " + type_id<OutputType>()); | |
} | |
template <typename ExceptionTranslator> | |
void register_exception_translator(ExceptionTranslator&& translator) { | |
detail::get_internals().registered_exception_translators.push_front( | |
std::forward<ExceptionTranslator>(translator)); | |
} | |
/** | |
* Wrapper to generate a new Python exception type. | |
* | |
* This should only be used with PyErr_SetString for now. | |
* It is not (yet) possible to use as a py::base. | |
* Template type argument is reserved for future use. | |
*/ | |
template <typename type> | |
class exception : public object { | |
public: | |
exception() = default; | |
exception(handle scope, const char *name, PyObject *base = PyExc_Exception) { | |
std::string full_name = scope.attr("__name__").cast<std::string>() + | |
std::string(".") + name; | |
m_ptr = PyErr_NewException(const_cast<char *>(full_name.c_str()), base, NULL); | |
if (hasattr(scope, name)) | |
pybind11_fail("Error during initialization: multiple incompatible " | |
"definitions with name \"" + std::string(name) + "\""); | |
scope.attr(name) = *this; | |
} | |
// Sets the current python exception to this exception object with the given message | |
void operator()(const char *message) { | |
PyErr_SetString(m_ptr, message); | |
} | |
}; | |
PYBIND11_NAMESPACE_BEGIN(detail) | |
// Returns a reference to a function-local static exception object used in the simple | |
// register_exception approach below. (It would be simpler to have the static local variable | |
// directly in register_exception, but that makes clang <3.5 segfault - issue #1349). | |
template <typename CppException> | |
exception<CppException> &get_exception_object() { static exception<CppException> ex; return ex; } | |
PYBIND11_NAMESPACE_END(detail) | |
/** | |
* Registers a Python exception in `m` of the given `name` and installs an exception translator to | |
* translate the C++ exception to the created Python exception using the exceptions what() method. | |
* This is intended for simple exception translations; for more complex translation, register the | |
* exception object and translator directly. | |
*/ | |
template <typename CppException> | |
exception<CppException> ®ister_exception(handle scope, | |
const char *name, | |
PyObject *base = PyExc_Exception) { | |
auto &ex = detail::get_exception_object<CppException>(); | |
if (!ex) ex = exception<CppException>(scope, name, base); | |
register_exception_translator([](std::exception_ptr p) { | |
if (!p) return; | |
try { | |
std::rethrow_exception(p); | |
} catch (const CppException &e) { | |
detail::get_exception_object<CppException>()(e.what()); | |
} | |
}); | |
return ex; | |
} | |
PYBIND11_NAMESPACE_BEGIN(detail) | |
PYBIND11_NOINLINE inline void print(tuple args, dict kwargs) { | |
auto strings = tuple(args.size()); | |
for (size_t i = 0; i < args.size(); ++i) { | |
strings[i] = str(args[i]); | |
} | |
auto sep = kwargs.contains("sep") ? kwargs["sep"] : cast(" "); | |
auto line = sep.attr("join")(strings); | |
object file; | |
if (kwargs.contains("file")) { | |
file = kwargs["file"].cast<object>(); | |
} else { | |
try { | |
file = module::import("sys").attr("stdout"); | |
} catch (const error_already_set &) { | |
/* If print() is called from code that is executed as | |
part of garbage collection during interpreter shutdown, | |
importing 'sys' can fail. Give up rather than crashing the | |
interpreter in this case. */ | |
return; | |
} | |
} | |
auto write = file.attr("write"); | |
write(line); | |
write(kwargs.contains("end") ? kwargs["end"] : cast("\n")); | |
if (kwargs.contains("flush") && kwargs["flush"].cast<bool>()) | |
file.attr("flush")(); | |
} | |
PYBIND11_NAMESPACE_END(detail) | |
template <return_value_policy policy = return_value_policy::automatic_reference, typename... Args> | |
void print(Args &&...args) { | |
auto c = detail::collect_arguments<policy>(std::forward<Args>(args)...); | |
detail::print(c.args(), c.kwargs()); | |
} | |
/* The functions below essentially reproduce the PyGILState_* API using a RAII | |
* pattern, but there are a few important differences: | |
* | |
* 1. When acquiring the GIL from an non-main thread during the finalization | |
* phase, the GILState API blindly terminates the calling thread, which | |
* is often not what is wanted. This API does not do this. | |
* | |
* 2. The gil_scoped_release function can optionally cut the relationship | |
* of a PyThreadState and its associated thread, which allows moving it to | |
* another thread (this is a fairly rare/advanced use case). | |
* | |
* 3. The reference count of an acquired thread state can be controlled. This | |
* can be handy to prevent cases where callbacks issued from an external | |
* thread would otherwise constantly construct and destroy thread state data | |
* structures. | |
* | |
* See the Python bindings of NanoGUI (http://github.com/wjakob/nanogui) for an | |
* example which uses features 2 and 3 to migrate the Python thread of | |
* execution to another thread (to run the event loop on the original thread, | |
* in this case). | |
*/ | |
class gil_scoped_acquire { | |
public: | |
PYBIND11_NOINLINE gil_scoped_acquire() { | |
auto const &internals = detail::get_internals(); | |
tstate = (PyThreadState *) PYBIND11_TLS_GET_VALUE(internals.tstate); | |
if (!tstate) { | |
/* Check if the GIL was acquired using the PyGILState_* API instead (e.g. if | |
calling from a Python thread). Since we use a different key, this ensures | |
we don't create a new thread state and deadlock in PyEval_AcquireThread | |
below. Note we don't save this state with internals.tstate, since we don't | |
create it we would fail to clear it (its reference count should be > 0). */ | |
tstate = PyGILState_GetThisThreadState(); | |
} | |
if (!tstate) { | |
tstate = PyThreadState_New(internals.istate); | |
if (!tstate) | |
pybind11_fail("scoped_acquire: could not create thread state!"); | |
tstate->gilstate_counter = 0; | |
PYBIND11_TLS_REPLACE_VALUE(internals.tstate, tstate); | |
} else { | |
release = detail::get_thread_state_unchecked() != tstate; | |
} | |
if (release) { | |
/* Work around an annoying assertion in PyThreadState_Swap */ | |
PyInterpreterState *interp = tstate->interp; | |
tstate->interp = nullptr; | |
PyEval_AcquireThread(tstate); | |
tstate->interp = interp; | |
} | |
inc_ref(); | |
} | |
void inc_ref() { | |
++tstate->gilstate_counter; | |
} | |
PYBIND11_NOINLINE void dec_ref() { | |
--tstate->gilstate_counter; | |
if (detail::get_thread_state_unchecked() != tstate) | |
pybind11_fail("scoped_acquire::dec_ref(): thread state must be current!"); | |
if (tstate->gilstate_counter < 0) | |
pybind11_fail("scoped_acquire::dec_ref(): reference count underflow!"); | |
if (tstate->gilstate_counter == 0) { | |
if (!release) | |
pybind11_fail("scoped_acquire::dec_ref(): internal error!"); | |
PyThreadState_Clear(tstate); | |
PyThreadState_DeleteCurrent(); | |
PYBIND11_TLS_DELETE_VALUE(detail::get_internals().tstate); | |
release = false; | |
} | |
} | |
PYBIND11_NOINLINE ~gil_scoped_acquire() { | |
dec_ref(); | |
if (release) | |
PyEval_SaveThread(); | |
} | |
private: | |
PyThreadState *tstate = nullptr; | |
bool release = true; | |
}; | |
class gil_scoped_release { | |
public: | |
explicit gil_scoped_release(bool disassoc = false) : disassoc(disassoc) { | |
// `get_internals()` must be called here unconditionally in order to initialize | |
// `internals.tstate` for subsequent `gil_scoped_acquire` calls. Otherwise, an | |
// initialization race could occur as multiple threads try `gil_scoped_acquire`. | |
const auto &internals = detail::get_internals(); | |
tstate = PyEval_SaveThread(); | |
if (disassoc) { | |
auto key = internals.tstate; | |
PYBIND11_TLS_DELETE_VALUE(key); | |
} | |
} | |
~gil_scoped_release() { | |
if (!tstate) | |
return; | |
PyEval_RestoreThread(tstate); | |
if (disassoc) { | |
auto key = detail::get_internals().tstate; | |
PYBIND11_TLS_REPLACE_VALUE(key, tstate); | |
} | |
} | |
private: | |
PyThreadState *tstate; | |
bool disassoc; | |
}; | |
class gil_scoped_acquire { | |
PyGILState_STATE state; | |
public: | |
gil_scoped_acquire() { state = PyGILState_Ensure(); } | |
~gil_scoped_acquire() { PyGILState_Release(state); } | |
}; | |
class gil_scoped_release { | |
PyThreadState *state; | |
public: | |
gil_scoped_release() { state = PyEval_SaveThread(); } | |
~gil_scoped_release() { PyEval_RestoreThread(state); } | |
}; | |
class gil_scoped_acquire { }; | |
class gil_scoped_release { }; | |
error_already_set::~error_already_set() { | |
if (m_type) { | |
gil_scoped_acquire gil; | |
error_scope scope; | |
m_type.release().dec_ref(); | |
m_value.release().dec_ref(); | |
m_trace.release().dec_ref(); | |
} | |
} | |
inline function get_type_overload(const void *this_ptr, const detail::type_info *this_type, const char *name) { | |
handle self = detail::get_object_handle(this_ptr, this_type); | |
if (!self) | |
return function(); | |
handle type = self.get_type(); | |
auto key = std::make_pair(type.ptr(), name); | |
/* Cache functions that aren't overloaded in Python to avoid | |
many costly Python dictionary lookups below */ | |
auto &cache = detail::get_internals().inactive_overload_cache; | |
if (cache.find(key) != cache.end()) | |
return function(); | |
function overload = getattr(self, name, function()); | |
if (overload.is_cpp_function()) { | |
cache.insert(key); | |
return function(); | |
} | |
/* Don't call dispatch code if invoked from overridden function. | |
Unfortunately this doesn't work on PyPy. */ | |
PyFrameObject *frame = PyThreadState_Get()->frame; | |
if (frame && (std::string) str(frame->f_code->co_name) == name && | |
frame->f_code->co_argcount > 0) { | |
PyFrame_FastToLocals(frame); | |
PyObject *self_caller = PyDict_GetItem( | |
frame->f_locals, PyTuple_GET_ITEM(frame->f_code->co_varnames, 0)); | |
if (self_caller == self.ptr()) | |
return function(); | |
} | |
/* PyPy currently doesn't provide a detailed cpyext emulation of | |
frame objects, so we have to emulate this using Python. This | |
is going to be slow..*/ | |
dict d; d["self"] = self; d["name"] = pybind11::str(name); | |
PyObject *result = PyRun_String( | |
"import inspect\n" | |
"frame = inspect.currentframe()\n" | |
"if frame is not None:\n" | |
" frame = frame.f_back\n" | |
" if frame is not None and str(frame.f_code.co_name) == name and " | |
"frame.f_code.co_argcount > 0:\n" | |
" self_caller = frame.f_locals[frame.f_code.co_varnames[0]]\n" | |
" if self_caller == self:\n" | |
" self = None\n", | |
Py_file_input, d.ptr(), d.ptr()); | |
if (result == nullptr) | |
throw error_already_set(); | |
if (d["self"].is_none()) | |
return function(); | |
Py_DECREF(result); | |
return overload; | |
} | |
/** \rst | |
Try to retrieve a python method by the provided name from the instance pointed to by the this_ptr. | |
:this_ptr: The pointer to the object the overload should be retrieved for. This should be the first | |
non-trampoline class encountered in the inheritance chain. | |
:name: The name of the overloaded Python method to retrieve. | |
:return: The Python method by this name from the object or an empty function wrapper. | |
\endrst */ | |
template <class T> function get_overload(const T *this_ptr, const char *name) { | |
auto tinfo = detail::get_type_info(typeid(T)); | |
return tinfo ? get_type_overload(this_ptr, tinfo, name) : function(); | |
} | |
/** \rst | |
Macro to populate the virtual method in the trampoline class. This macro tries to look up a method named 'fn' | |
from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return | |
the appropriate type. See :ref:`overriding_virtuals` for more information. This macro should be used when the method | |
name in C is not the same as the method name in Python. For example with `__str__`. | |
.. code-block:: cpp | |
std::string toString() override { | |
PYBIND11_OVERLOAD_NAME( | |
std::string, // Return type (ret_type) | |
Animal, // Parent class (cname) | |
"__str__", // Name of method in Python (name) | |
toString, // Name of function in C++ (fn) | |
); | |
} | |
\endrst */ | |
/** \rst | |
Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERLOAD_NAME`, except that it | |
throws if no overload can be found. | |
\endrst */ | |
/** \rst | |
Macro to populate the virtual method in the trampoline class. This macro tries to look up the method | |
from the Python side, deals with the :ref:`gil` and necessary argument conversions to call this method and return | |
the appropriate type. This macro should be used if the method name in C and in Python are identical. | |
See :ref:`overriding_virtuals` for more information. | |
.. code-block:: cpp | |
class PyAnimal : public Animal { | |
public: | |
// Inherit the constructors | |
using Animal::Animal; | |
// Trampoline (need one for each virtual function) | |
std::string go(int n_times) override { | |
PYBIND11_OVERLOAD_PURE( | |
std::string, // Return type (ret_type) | |
Animal, // Parent class (cname) | |
go, // Name of function in C++ (must match Python name) (fn) | |
n_times // Argument(s) (...) | |
); | |
} | |
}; | |
\endrst */ | |
/** \rst | |
Macro for pure virtual functions, this function is identical to :c:macro:`PYBIND11_OVERLOAD`, except that it throws | |
if no overload can be found. | |
\endrst */ | |
PYBIND11_NAMESPACE_END(PYBIND11_NAMESPACE) | |