Spaces:
Runtime error
Runtime error
import subprocess | |
import gradio as gr | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
LLM_BENCHMARKS_TEXT_1, | |
EVALUATION_EXAMPLE_IMG, | |
LLM_BENCHMARKS_TEXT_2, | |
# ENTITY_DISTRIBUTION_IMG, | |
LLM_BENCHMARKS_TEXT_3, | |
TITLE, | |
LOGO | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
DATASET_BENCHMARK_COLS, | |
TYPES_BENCHMARK_COLS, | |
DATASET_COLS, | |
Clinical_TYPES_COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
NUMERIC_INTERVALS, | |
TYPES, | |
AutoEvalColumn, | |
ModelType, | |
ModelArch, | |
PromptTemplateName, | |
Precision, | |
WeightType, | |
fields, | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval, PLACEHOLDER_DATASET_WISE_NORMALIZATION_CONFIG | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
try: | |
print(EVAL_REQUESTS_PATH) | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
print(EVAL_RESULTS_PATH) | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
# Span based results | |
_, harness_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "accuracy", "datasets") | |
harness_datasets_leaderboard_df = harness_datasets_original_df.copy() | |
# _, span_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "SpanBasedWithPartialOverlap", "clinical_types") | |
# span_based_types_leaderboard_df = span_based_types_original_df.copy() | |
# # Token based results | |
# _, token_based_datasets_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, DATASET_COLS, DATASET_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "datasets") | |
# token_based_datasets_leaderboard_df = token_based_datasets_original_df.copy() | |
# _, token_based_types_original_df = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, Clinical_TYPES_COLS, TYPES_BENCHMARK_COLS, "TokenBasedWithMacroAverage", "clinical_types") | |
# token_based_types_leaderboard_df = token_based_types_original_df.copy() | |
( | |
finished_eval_queue_df, | |
running_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def update_df(shown_columns, subset="datasets"): | |
leaderboard_table_df = harness_datasets_leaderboard_df.copy() | |
hidden_leader_board_df = harness_datasets_original_df | |
# else: | |
# match evaluation_metric: | |
# case "Span Based": | |
# leaderboard_table_df = span_based_types_leaderboard_df.copy() | |
# hidden_leader_board_df = span_based_types_original_df | |
# case "Token Based": | |
# leaderboard_table_df = token_based_types_leaderboard_df.copy() | |
# hidden_leader_board_df = token_based_types_original_df | |
# case _: | |
# pass | |
value_cols = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns | |
return leaderboard_table_df[value_cols], hidden_leader_board_df | |
# Searching and filtering | |
def update_table( | |
hidden_df: pd.DataFrame, | |
columns: list, | |
query: str, | |
type_query: list = None, | |
architecture_query: list = None, | |
size_query: list = None, | |
precision_query: str = None, | |
show_deleted: bool = False, | |
): | |
filtered_df = filter_models(hidden_df, type_query, architecture_query, size_query, precision_query, show_deleted) | |
filtered_df = filter_queries(query, filtered_df) | |
df = select_columns(filtered_df, columns, list(hidden_df.columns)) | |
return df | |
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame: | |
return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))] | |
def select_columns(df: pd.DataFrame, columns: list, cols:list) -> pd.DataFrame: | |
always_here_cols = [ | |
AutoEvalColumn.model_type_symbol.name, | |
AutoEvalColumn.model.name, | |
] | |
# We use COLS to maintain sorting | |
filtered_df = df[always_here_cols + [c for c in cols if c in df.columns and c in columns]] | |
return filtered_df | |
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame: | |
final_df = [] | |
if query != "": | |
queries = [q.strip() for q in query.split(";")] | |
for _q in queries: | |
_q = _q.strip() | |
if _q != "": | |
temp_filtered_df = search_table(filtered_df, _q) | |
if len(temp_filtered_df) > 0: | |
final_df.append(temp_filtered_df) | |
if len(final_df) > 0: | |
filtered_df = pd.concat(final_df) | |
filtered_df = filtered_df.drop_duplicates( | |
subset=[ | |
AutoEvalColumn.model.name, | |
# AutoEvalColumn.precision.name, | |
# AutoEvalColumn.revision.name, | |
] | |
) | |
return filtered_df | |
def filter_models( | |
df: pd.DataFrame, type_query: list, architecture_query: list, size_query: list, precision_query: list, show_deleted: bool | |
) -> pd.DataFrame: | |
# Show all models | |
# if show_deleted: | |
# filtered_df = df | |
# else: # Show only still on the hub models | |
# filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True] | |
filtered_df = df | |
if type_query is not None: | |
type_emoji = [t[0] for t in type_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)] | |
if architecture_query is not None: | |
arch_types = [t for t in architecture_query] | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(arch_types)] | |
# filtered_df = filtered_df.loc[df[AutoEvalColumn.architecture.name].isin(architecture_query + ["None"])] | |
if precision_query is not None: | |
if AutoEvalColumn.precision.name in df.columns: | |
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])] | |
if size_query is not None: | |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query])) | |
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce") | |
mask = params_column.apply(lambda x: any(numeric_interval.contains(x))) | |
filtered_df = filtered_df.loc[mask] | |
return filtered_df | |
def change_submit_request_form(model_architecture): | |
match model_architecture: | |
case "Encoder": | |
return ( | |
gr.Textbox(label="Threshold for gliner models", visible=False), | |
gr.Radio( | |
choices=["True", "False"], | |
label="Load GLiNER Tokenizer", | |
visible=False | |
), | |
gr.Dropdown( | |
choices=[prompt_template.value for prompt_template in PromptTemplateName], | |
label="Prompt for generation", | |
multiselect=False, | |
# value="HTML Highlighted Spans", | |
interactive=True, | |
visible=False | |
) | |
) | |
case "Decoder": | |
return ( | |
gr.Textbox(label="Threshold for gliner models", visible=False), | |
gr.Radio( | |
choices=["True", "False"], | |
label="Load GLiNER Tokenizer", | |
visible=False | |
), | |
gr.Dropdown( | |
choices=[prompt_template.value for prompt_template in PromptTemplateName], | |
label="Prompt for generation", | |
multiselect=False, | |
# value="HTML Highlighted Spans", | |
interactive=True, | |
visible=True | |
) | |
) | |
case "GLiNER Encoder": | |
return ( | |
gr.Textbox(label="Threshold for gliner models", visible=True), | |
gr.Radio( | |
choices=["True", "False"], | |
label="Load GLiNER Tokenizer", | |
visible=True | |
), | |
gr.Dropdown( | |
choices=[prompt_template.value for prompt_template in PromptTemplateName], | |
label="Prompt for generation", | |
multiselect=False, | |
# value="HTML Highlighted Spans", | |
interactive=True, | |
visible=False | |
) | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.HTML(LOGO, elem_classes="logo") | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Closed Ended Evaluation", elem_id="llm-benchmark-tab-table", id=0): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
search_bar = gr.Textbox( | |
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...", | |
show_label=False, | |
elem_id="search-bar", | |
) | |
with gr.Row(): | |
shown_columns = gr.CheckboxGroup( | |
choices=[c.name for c in fields(AutoEvalColumn) if not c.hidden and not c.never_hidden and not c.clinical_type_col], | |
value=[ | |
c.name | |
for c in fields(AutoEvalColumn) | |
if c.displayed_by_default and not c.hidden and not c.never_hidden and not c.clinical_type_col | |
], | |
label="Select columns to show", | |
elem_id="column-select", | |
interactive=True, | |
) | |
# with gr.Row(): | |
# deleted_models_visibility = gr.Checkbox( | |
# value=False, label="Show gated/private/deleted models", interactive=True | |
# ) | |
with gr.Column(min_width=320): | |
# with gr.Box(elem_id="box-filter"): | |
filter_columns_type = gr.CheckboxGroup( | |
label="Model Types", | |
choices=[t.to_str() for t in ModelType], | |
value=[t.to_str() for t in ModelType], | |
interactive=True, | |
elem_id="filter-columns-type", | |
) | |
# filter_columns_architecture = gr.CheckboxGroup( | |
# label="Architecture Types", | |
# choices=[i.value.name for i in ModelArch], | |
# value=[i.value.name for i in ModelArch], | |
# interactive=True, | |
# elem_id="filter-columns-architecture", | |
# ) | |
filter_columns_size = gr.CheckboxGroup( | |
label="Model sizes (in billions of parameters)", | |
choices=list(NUMERIC_INTERVALS.keys()), | |
value=list(NUMERIC_INTERVALS.keys()), | |
interactive=True, | |
elem_id="filter-columns-size", | |
) | |
datasets_leaderboard_df, datasets_original_df = update_df(shown_columns.value, subset="datasets") | |
leaderboard_table = gr.components.Dataframe( | |
value=datasets_leaderboard_df[[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value], | |
headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value, | |
datatype=TYPES, | |
elem_id="leaderboard-table", | |
interactive=False, | |
visible=True, | |
) | |
# Dummy leaderboard for handling the case when the user uses backspace key | |
# hidden_leaderboard_table_for_search = gr.components.Dataframe( | |
# value=datasets_original_df[DATASET_COLS], | |
# headers=DATASET_COLS, | |
# datatype=TYPES, | |
# visible=False, | |
# ) | |
# search_bar.submit( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# shown_columns, | |
# search_bar, | |
# filter_columns_type, | |
# # filter_columns_architecture | |
# ], | |
# leaderboard_table, | |
# ) | |
# for selector in [ | |
# shown_columns, | |
# filter_columns_type, | |
# # filter_columns_architecture, | |
# # filter_columns_size, | |
# # deleted_models_visibility, | |
# ]: | |
# selector.change( | |
# update_table, | |
# [ | |
# hidden_leaderboard_table_for_search, | |
# shown_columns, | |
# search_bar, | |
# filter_columns_type, | |
# # filter_columns_architecture, | |
# ], | |
# leaderboard_table, | |
# queue=True, | |
# ) | |
with gr.TabItem("π Open Ended Evaluation", elem_id="llm-benchmark-tab-table", id=1): | |
pass | |
with gr.TabItem("π Med Safety", elem_id="llm-benchmark-tab-table", id=2): | |
pass | |
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=3): | |
gr.Markdown(LLM_BENCHMARKS_TEXT_1, elem_classes="markdown-text") | |
gr.HTML(EVALUATION_EXAMPLE_IMG, elem_classes="logo") | |
gr.Markdown(LLM_BENCHMARKS_TEXT_2, elem_classes="markdown-text") | |
# gr.HTML(ENTITY_DISTRIBUTION_IMG, elem_classes="logo") | |
gr.Markdown(LLM_BENCHMARKS_TEXT_3, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=4): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"π Running Evaluation Queue ({len(running_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
running_eval_table = gr.components.Dataframe( | |
value=running_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main") | |
model_type = gr.Dropdown( | |
choices=[t.to_str(" : ") for t in ModelType if t != ModelType.Unknown], | |
label="Model type", | |
multiselect=False, | |
value=None, | |
interactive=True, | |
) | |
with gr.Column(): | |
precision = gr.Dropdown( | |
choices=[i.value.name for i in Precision if i != Precision.Unknown], | |
label="Precision", | |
multiselect=False, | |
value="float16", | |
interactive=True, | |
) | |
weight_type = gr.Dropdown( | |
choices=[i.value.name for i in WeightType], | |
label="Weights type", | |
multiselect=False, | |
value=WeightType.Original.value.name, | |
interactive=True, | |
) | |
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)", interactive=False) | |
with gr.Row(): | |
domain_specific_toggle = gr.Checkbox( | |
label="Domain specific", | |
value=False, | |
info="Is your model medically oriented?", | |
) | |
chat_template_toggle = gr.Checkbox( | |
label="Use chat template", | |
value=False, | |
info="Is your model a chat model?", | |
) | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
add_new_eval, | |
[ | |
model_name_textbox, | |
base_model_name_textbox, | |
revision_name_textbox, | |
model_type, | |
domain_specific_toggle, | |
chat_template_toggle, | |
precision, | |
weight_type | |
], | |
submission_result, | |
) | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.queue(default_concurrency_limit=40).launch(allowed_paths=['./assets/']) | |