NotebookMg / app.py
TheM1N9
first commit
e56e019
raw
history blame
11.2 kB
import uvicorn
from fastapi import FastAPI, UploadFile, File, HTTPException, Form, Request, Response
from fastapi.responses import FileResponse, HTMLResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
import shutil
import os
from pathlib import Path
from main import NotebookMg
from dotenv import load_dotenv
import logging
from pydub import AudioSegment
# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
load_dotenv()
app = FastAPI(docs_url=None, redoc_url=None) # Disable Swagger UI # Disable ReDoc
# Mount static directory - make sure this comes before other routes
app.mount("/static", StaticFiles(directory="static"), name="static")
# Set up templates
templates = Jinja2Templates(directory="templates")
# Create necessary directories
UPLOAD_DIR = Path("uploads")
OUTPUT_DIR = Path("outputs")
STATIC_DIR = Path("static")
# Create directories if they don't exist
UPLOAD_DIR.mkdir(exist_ok=True)
OUTPUT_DIR.mkdir(exist_ok=True)
STATIC_DIR.mkdir(exist_ok=True)
# Make sure styles.css exists in static directory
if not (STATIC_DIR / "styles.css").exists():
logger.warning("styles.css not found in static directory")
# Initialize the NotebookGemini instance
try:
gemini_bot = NotebookMg(
gemini_api_key=os.getenv("GEMINI_API_KEY", "dude, wth enter your key"),
eleven_api_key=os.getenv("ELEVEN_API_KEY", "dude, wth enter your key"),
Tharun_voice_id="21m00Tcm4TlvDq8ikWAM",
Akshara_voice_id="IKne3meq5aSn9XLyUdCD",
)
except Exception as e:
logger.error(f"Failed to initialize NotebookMg: {str(e)}")
raise
# Get credentials from .env or use defaults
ADMIN_USERNAME = os.getenv("ADMIN_USERNAME", "admin")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD", "password123")
@app.post("/login")
async def login(
username: str = Form(...), password: str = Form(...), response: Response = None
):
if username == ADMIN_USERNAME and password == ADMIN_PASSWORD:
response = RedirectResponse(url="/", status_code=303)
response.set_cookie(key="authenticated", value="true", httponly=True)
return response
raise HTTPException(status_code=401, detail="Invalid credentials")
@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request):
"""Serve the index page"""
# Check if user is authenticated
is_authenticated = request.cookies.get("authenticated") == "true"
return templates.TemplateResponse(
"index.html", {"request": request, "is_authenticated": is_authenticated}
)
@app.post("/upload-pdf/")
async def upload_pdf(
file: UploadFile = File(...),
tharun_voice_id: str = Form(...),
akshara_voice_id: str = Form(...),
):
"""Upload PDF and generate podcast"""
pdf_path = None # Initialize pdf_path before try block
try:
if not file.filename:
raise HTTPException(status_code=400, detail="Please upload a PDF")
if not file.filename.endswith(".pdf"):
raise HTTPException(status_code=400, detail="File must be a PDF")
logger.info(f"Processing file: {file.filename}")
# Clean up old files before processing new upload
try:
# Clean up old segments and podcast files
for old_file in OUTPUT_DIR.glob("*"):
try:
os.remove(old_file)
logger.info(f"Cleaned up old file: {old_file}")
except Exception as e:
logger.error(f"Failed to remove old file {old_file}: {str(e)}")
except Exception as e:
logger.error(f"Error during cleanup: {str(e)}")
# Save the uploaded PDF
pdf_path = UPLOAD_DIR / file.filename
try:
with open(pdf_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
except Exception as e:
logger.error(f"Failed to save uploaded file: {str(e)}")
raise HTTPException(status_code=500, detail="Failed to save uploaded file")
try:
# Update the gemini_bot instance with user-provided voice IDs
gemini_bot.Tharun_voice_id = tharun_voice_id
gemini_bot.Akshara_voice_id = akshara_voice_id
# Generate unique output filenames
base_name = pdf_path.stem
cleaned_text_path = OUTPUT_DIR / f"{base_name}_cleaned.txt"
transcript_path = OUTPUT_DIR / f"{base_name}_transcript.txt"
podcast_path = OUTPUT_DIR / f"{base_name}_podcast.mp3"
# Process the PDF
logger.info("Processing PDF...")
text = gemini_bot.get_pdf_text(str(pdf_path))
cleaned_text = gemini_bot.process_pdf(text)
with open(cleaned_text_path, "w", encoding="utf-8") as f:
f.write(cleaned_text)
logger.info("Creating transcript...")
transcript = gemini_bot.create_transcript(cleaned_text, text)
with open(transcript_path, "w", encoding="utf-8") as f:
f.write(transcript)
logger.info("Dramatizing transcript...")
speaker_lines = gemini_bot.dramatize_transcript(transcript, text)
# Save individual audio segments
segment_files = []
for i, (speaker, line) in enumerate(speaker_lines):
segment_path = OUTPUT_DIR / f"{base_name}_segment_{i}.mp3"
voice_id = (
gemini_bot.Akshara_voice_id
if speaker == "Akshara"
else gemini_bot.Tharun_voice_id
)
# Generate individual segment audio
audio_data = gemini_bot.eleven_client.text_to_speech.convert(
voice_id=voice_id,
output_format="mp3_44100_128",
text=line,
model_id="eleven_multilingual_v2",
)
# Save segment
audio_bytes = b"".join(audio_data)
with open(segment_path, "wb") as f:
f.write(audio_bytes)
segment_files.append(
{"file": segment_path.name, "speaker": speaker, "text": line}
)
# Generate final combined audio as before
gemini_bot.generate_audio(speaker_lines, str(podcast_path))
return {
"message": "Podcast generated successfully",
"podcast_file": podcast_path.name,
"segments": segment_files,
}
except Exception as e:
logger.error(f"Processing error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")
except HTTPException:
raise
except Exception as e:
logger.error(f"Unexpected error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
finally:
# Clean up uploaded PDF
if pdf_path and pdf_path.exists():
try:
os.remove(pdf_path)
except Exception as e:
logger.error(f"Failed to clean up uploaded file: {str(e)}")
@app.get("/download/{filename}")
async def download_file(filename: str):
"""Download generated files"""
file_path = OUTPUT_DIR / filename
if not file_path.exists():
raise HTTPException(status_code=404, detail="File not found")
return FileResponse(
path=file_path, filename=filename, media_type="application/octet-stream"
)
@app.get("/status")
async def get_status():
"""Check API status"""
return {"status": "running"}
@app.post("/regenerate-segment/{index}")
async def regenerate_segment(
index: int,
speaker: str = Form(...),
text: str = Form(...),
tharun_voice_id: str = Form(...),
akshara_voice_id: str = Form(...),
):
try:
# Select the appropriate voice ID based on speaker
voice_id = akshara_voice_id if speaker == "Akshara" else tharun_voice_id
# Generate new audio using ElevenLabs
audio_data = gemini_bot.eleven_client.text_to_speech.convert(
voice_id=voice_id,
output_format="mp3_44100_128",
text=text,
model_id="eleven_multilingual_v2",
)
# Get the base name from existing segments
base_name = next(OUTPUT_DIR.glob("*_segment_0.mp3")).stem.rsplit(
"_segment_0", 1
)[0]
segment_path = OUTPUT_DIR / f"{base_name}_segment_{index}.mp3"
# Delete the existing segment file if it exists
if segment_path.exists():
try:
os.remove(segment_path)
logger.info(f"Deleted existing segment file: {segment_path}")
except Exception as e:
logger.error(f"Error deleting existing segment file: {str(e)}")
# Continue anyway as we'll overwrite the file
# Save the regenerated segment
audio_bytes = b"".join(audio_data)
with open(segment_path, "wb") as f:
f.write(audio_bytes)
logger.info(f"Saved new segment file: {segment_path}")
# Delete existing podcast file if it exists
podcast_path = OUTPUT_DIR / f"{base_name}_podcast.mp3"
if podcast_path.exists():
try:
os.remove(podcast_path)
logger.info(f"Deleted existing podcast file: {podcast_path}")
except Exception as e:
logger.error(f"Error deleting existing podcast file: {str(e)}")
# Combine all segments into a new complete podcast
combined_audio = AudioSegment.empty()
# Get all segment files and sort them correctly
segment_files = sorted(
[f for f in OUTPUT_DIR.glob(f"{base_name}_segment_*.mp3")],
key=lambda x: int(x.stem.split("_")[-1]),
)
logger.info(f"Found {len(segment_files)} segments to combine")
# Add each segment to the combined audio
for segment_file in segment_files:
try:
logger.info(f"Processing segment: {segment_file}")
audio_segment = AudioSegment.from_file(segment_file, format="mp3")
pause = AudioSegment.silent(duration=300) # 300ms pause
combined_audio += audio_segment + pause
except Exception as e:
logger.error(f"Error processing segment {segment_file}: {str(e)}")
raise
# Save the new complete podcast
combined_audio.export(str(podcast_path), format="mp3")
logger.info(
f"Successfully generated new podcast with {len(segment_files)} segments"
)
return {
"success": True,
"segment_file": segment_path.name,
"podcast_file": podcast_path.name,
}
except Exception as e:
logger.error(f"Regeneration error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Regeneration error: {str(e)}")
# if __name__ == "__main__":
# uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)