File size: 10,936 Bytes
e56e019
951cbfb
 
 
 
 
 
 
 
 
 
e56e019
 
 
951cbfb
e56e019
 
 
 
 
 
 
 
 
 
 
 
 
 
951cbfb
e56e019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951cbfb
e56e019
951cbfb
 
e56e019
 
 
 
951cbfb
e56e019
 
951cbfb
e56e019
 
 
 
 
951cbfb
e56e019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
951cbfb
e56e019
 
 
 
 
951cbfb
 
 
e56e019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0104e23
 
 
 
 
 
 
e56e019
0104e23
e56e019
0104e23
 
 
 
 
e56e019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
import uvicorn
from fastapi import (
    FastAPI,
    UploadFile,
    File,
    HTTPException,
    Form,
    Request,
    Response,
    Depends,
)
from fastapi.responses import FileResponse, HTMLResponse, RedirectResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.security import HTTPBasic, HTTPBasicCredentials
import shutil
import os
from pathlib import Path
from main import NotebookMg
from dotenv import load_dotenv
import logging

# Set up logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)

load_dotenv()

app = FastAPI(docs_url=None, redoc_url=None)  # Disable Swagger UI  # Disable ReDoc
security = HTTPBasic()

# Mount static directory - make sure this comes before other routes
app.mount("/static", StaticFiles(directory="static"), name="static")

# Set up templates
templates = Jinja2Templates(directory="templates")

# Create necessary directories
UPLOAD_DIR = Path("uploads")
OUTPUT_DIR = Path("outputs")
STATIC_DIR = Path("static")

# Create directories if they don't exist
UPLOAD_DIR.mkdir(exist_ok=True)
OUTPUT_DIR.mkdir(exist_ok=True)
STATIC_DIR.mkdir(exist_ok=True)

# Make sure styles.css exists in static directory
if not (STATIC_DIR / "styles.css").exists():
    logger.warning("styles.css not found in static directory")

# Initialize the NotebookGemini instance
try:
    gemini_bot = NotebookMg(
        gemini_api_key=os.getenv("GEMINI_API_KEY", "dude, wth enter your key"),
        eleven_api_key=os.getenv("ELEVEN_API_KEY", "dude, wth enter your key"),
        Tharun_voice_id="21m00Tcm4TlvDq8ikWAM",
        Akshara_voice_id="IKne3meq5aSn9XLyUdCD",
    )
except Exception as e:
    logger.error(f"Failed to initialize NotebookMg: {str(e)}")
    raise

# Get credentials from .env or use defaults
ADMIN_USERNAME = os.getenv("ADMIN_USERNAME", "admin")
ADMIN_PASSWORD = os.getenv("ADMIN_PASSWORD", "password123")


@app.post("/login")
async def login(username: str = Form(...), password: str = Form(...)):
    if username == ADMIN_USERNAME and password == ADMIN_PASSWORD:
        # Instead of setting a cookie, redirect with query parameter
        return RedirectResponse(url="/?authenticated=true", status_code=303)
    raise HTTPException(status_code=401, detail="Invalid credentials")


@app.get("/", response_class=HTMLResponse)
async def read_root(request: Request, authenticated: bool = False):
    """Serve the index page"""
    return templates.TemplateResponse(
        "index.html", {"request": request, "is_authenticated": authenticated}
    )


@app.post("/upload-pdf/")
async def upload_pdf(
    authenticated: bool = False,
    file: UploadFile = File(...),
    tharun_voice_id: str = Form(...),
    akshara_voice_id: str = Form(...),
):
    """Upload PDF and generate podcast"""
    pdf_path = None  # Initialize pdf_path before try block
    try:
        if not file.filename:
            raise HTTPException(status_code=400, detail="Please upload a PDF")
        if not file.filename.endswith(".pdf"):
            raise HTTPException(status_code=400, detail="File must be a PDF")

        logger.info(f"Processing file: {file.filename}")

        # Clean up old files before processing new upload
        try:
            # Clean up old segments and podcast files
            for old_file in OUTPUT_DIR.glob("*"):
                try:
                    os.remove(old_file)
                    logger.info(f"Cleaned up old file: {old_file}")
                except Exception as e:
                    logger.error(f"Failed to remove old file {old_file}: {str(e)}")
        except Exception as e:
            logger.error(f"Error during cleanup: {str(e)}")

        # Save the uploaded PDF
        pdf_path = UPLOAD_DIR / file.filename
        try:
            with open(pdf_path, "wb") as buffer:
                shutil.copyfileobj(file.file, buffer)
        except Exception as e:
            logger.error(f"Failed to save uploaded file: {str(e)}")
            raise HTTPException(status_code=500, detail="Failed to save uploaded file")

        try:
            # Update the gemini_bot instance with user-provided voice IDs
            gemini_bot.Tharun_voice_id = tharun_voice_id
            gemini_bot.Akshara_voice_id = akshara_voice_id

            # Generate unique output filenames
            base_name = pdf_path.stem
            cleaned_text_path = OUTPUT_DIR / f"{base_name}_cleaned.txt"
            transcript_path = OUTPUT_DIR / f"{base_name}_transcript.txt"
            podcast_path = OUTPUT_DIR / f"{base_name}_podcast.mp3"

            # Process the PDF
            logger.info("Processing PDF...")
            text = gemini_bot.get_pdf_text(str(pdf_path))
            cleaned_text = gemini_bot.process_pdf(text)
            with open(cleaned_text_path, "w", encoding="utf-8") as f:
                f.write(cleaned_text)

            logger.info("Creating transcript...")
            transcript = gemini_bot.create_transcript(cleaned_text, text)
            with open(transcript_path, "w", encoding="utf-8") as f:
                f.write(transcript)

            logger.info("Dramatizing transcript...")
            speaker_lines = gemini_bot.dramatize_transcript(transcript, text)

            # Save individual audio segments
            segment_files = []
            for i, (speaker, line) in enumerate(speaker_lines):
                segment_path = OUTPUT_DIR / f"{base_name}_segment_{i}.mp3"
                voice_id = (
                    gemini_bot.Akshara_voice_id
                    if speaker == "Akshara"
                    else gemini_bot.Tharun_voice_id
                )

                # Generate individual segment audio
                audio_data = gemini_bot.eleven_client.text_to_speech.convert(
                    voice_id=voice_id,
                    output_format="mp3_44100_128",
                    text=line,
                    model_id="eleven_multilingual_v2",
                )

                # Save segment
                audio_bytes = b"".join(audio_data)
                with open(segment_path, "wb") as f:
                    f.write(audio_bytes)

                segment_files.append(
                    {"file": segment_path.name, "speaker": speaker, "text": line}
                )

            # Generate final combined audio as before
            gemini_bot.generate_audio(speaker_lines, str(podcast_path))

            return {
                "message": "Podcast generated successfully",
                "podcast_file": podcast_path.name,
                "segments": segment_files,
            }

        except Exception as e:
            logger.error(f"Processing error: {str(e)}")
            raise HTTPException(status_code=500, detail=f"Processing error: {str(e)}")

    except HTTPException:
        raise
    except Exception as e:
        logger.error(f"Unexpected error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Unexpected error: {str(e)}")
    finally:
        # Clean up uploaded PDF
        if pdf_path and pdf_path.exists():
            try:
                os.remove(pdf_path)
            except Exception as e:
                logger.error(f"Failed to clean up uploaded file: {str(e)}")


@app.get("/download/{filename}")
async def download_file(filename: str):
    """Download generated files"""
    file_path = OUTPUT_DIR / filename
    if not file_path.exists():
        raise HTTPException(status_code=404, detail="File not found")

    return FileResponse(
        path=file_path, filename=filename, media_type="application/octet-stream"
    )


@app.get("/status")
async def get_status():
    """Check API status"""
    return {"status": "running"}


@app.post("/regenerate-segment/{index}")
async def regenerate_segment(
    index: int,
    authenticated: bool = False,
    speaker: str = Form(...),
    text: str = Form(...),
    tharun_voice_id: str = Form(...),
    akshara_voice_id: str = Form(...),
):
    if not authenticated:
        raise HTTPException(status_code=401, detail="Authentication required")

    try:
        # Select the appropriate voice ID based on speaker
        voice_id = akshara_voice_id if speaker == "Akshara" else tharun_voice_id

        # Generate new audio using ElevenLabs
        audio_data = gemini_bot.eleven_client.text_to_speech.convert(
            voice_id=voice_id,
            output_format="mp3_44100_128",
            text=text,
            model_id="eleven_multilingual_v2",
        )

        # Get the base name from existing segments
        base_name = next(OUTPUT_DIR.glob("*_segment_0.mp3")).stem.rsplit(
            "_segment_0", 1
        )[0]
        segment_path = OUTPUT_DIR / f"{base_name}_segment_{index}.mp3"

        # Delete the existing segment file if it exists
        if segment_path.exists():
            try:
                os.remove(segment_path)
                logger.info(f"Deleted existing segment file: {segment_path}")
            except Exception as e:
                logger.error(f"Error deleting existing segment file: {str(e)}")

        # Save the regenerated segment
        audio_bytes = b"".join(audio_data)
        with open(segment_path, "wb") as f:
            f.write(audio_bytes)
        logger.info(f"Saved new segment file: {segment_path}")

        # Delete existing podcast file if it exists
        podcast_path = OUTPUT_DIR / f"{base_name}_podcast.mp3"
        if podcast_path.exists():
            try:
                os.remove(podcast_path)
                logger.info(f"Deleted existing podcast file: {podcast_path}")
            except Exception as e:
                logger.error(f"Error deleting existing podcast file: {str(e)}")

        # Instead of using pydub, we'll concatenate the MP3 files directly
        with open(podcast_path, "wb") as outfile:
            # Get all segment files and sort them correctly
            segment_files = sorted(
                [f for f in OUTPUT_DIR.glob(f"{base_name}_segment_*.mp3")],
                key=lambda x: int(x.stem.split("_")[-1]),
            )

            logger.info(f"Found {len(segment_files)} segments to combine")

            # Concatenate all MP3 files
            for segment_file in segment_files:
                with open(segment_file, "rb") as infile:
                    outfile.write(infile.read())
                    # No pause between segments in this simple approach

        logger.info(
            f"Successfully generated new podcast with {len(segment_files)} segments"
        )

        return {
            "success": True,
            "segment_file": segment_path.name,
            "podcast_file": podcast_path.name,
        }

    except Exception as e:
        logger.error(f"Regeneration error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Regeneration error: {str(e)}")


# if __name__ == "__main__":
#     uvicorn.run("app:app", host="0.0.0.0", port=8000, reload=True)