data_dir: 'data' chunk_method: { 'method': 'semantic', 'args': { 'model_source': 'openai', 'model_name': 'text-embedding-3-small', 'breakpoint_type': 'percentile' } } vectorstore_model: { 'model_source': 'openai', 'model_name': 'text-embedding-3-large', 'vector_size': 3072 } # Metrics: faithfulness, answer_relevancy, context_precision, context_recall metrics: ['faithfulness', 'answer_relevancy', 'context_precision', 'context_recall'] ls_project: 'policy-rag' ls_dataset_name: "policy-golden-1000-over-100" ls_experiment_name: 'policy-chunk-semantic'