import gradio as gr import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import MultipleLocator INTRO = """# Harm's law The Chinchilla scaling laws focus on optimally scaling training compute but often we also care about inference cost. This tool follows [Harm de Vries' blog post](https://www.harmdevries.com/post/model-size-vs-compute-overhead/) and visualizes the tradeoff between training compute and inference cost (i.e. model size). """ ### CHINCHILLA PARAMS: E = 1.62 A = 406.4 B = 410.7 alpha = 0.336 beta = 0.283 Bn = 10**9 G = ((alpha*A)/(beta*B))**(1/(alpha+beta)) ### FUNCTIONS def to_flops(N, D): return 6 * N * D def n_opt(C): return G * ((C/6) ** (beta / (alpha+beta))) def d_opt(C): return (1/G) * ((C/6) ** (alpha / (alpha+beta))) def compute_kd(kn): frac = (A/B)*(G**(-alpha-beta)) kd = (1-((kn**-alpha -1)*frac))**(1/(-beta)) return kd def compute_overhead(kn, kd): return kn*kd - 1 ### PRECOMPUTE CURVE: kn_min = 0.2 kn_max = 2 kns = np.linspace(0.2, 2, 100) overheads = [] for kn in kns: kd = compute_kd(kn) overheads.append(compute_overhead(kn, kd)*100) def plot_curve(kn, kd): fig, ax = plt.subplots(dpi=200, figsize=(5, 3)) plt.plot(kns, overheads, color="black", zorder=1) plt.scatter([kn], [compute_overhead(kn, kd)*100], s=100, marker="o", c="red", label="You are here!", zorder=2) plt.scatter([1.0], [0.0], marker="o", s=100, c="blue", label="Chinchilla optimal", zorder=2) plt.xlabel("Fraction of Chinchilla optimal model size") plt.ylabel("Compute overhead (%)") plt.legend(loc="best") plt.grid(True, which="both") plt.grid(True, which="minor", alpha=0.5) ax.yaxis.set_minor_locator(MultipleLocator(10)) plt.tight_layout() return fig def compute(N, D): C = to_flops(N * Bn, D * Bn) N_opt = n_opt(C) D_opt = d_opt(C) kn = Bn*N/N_opt kd = compute_kd(kn) fig = plot_curve(kn, kd) text = f"""\ ## Compute: Your specificied setting corresponds to the following training compute budget. **Compute budget (TFLOPs): {C:.2E}** ## Chinchilla optimal: If you are optimizing for model performance and ignore inference cost this is the optimal setting for training: **Optimal model size: {N_opt/Bn:.2f}B parameters** **Optimal dataset size: {D_opt/Bn:.2f}B tokens** ## Your setting trade-off: Compared to the compute optimal model. **Training compute overhead: {100*compute_overhead(kn, kd):.2f}%** **Inference cost savings: {100 - kn*100:.2f}%** """ return text, fig with gr.Blocks() as demo: gr.Markdown(INTRO) with gr.Row(): N = gr.Number(value=7, label="Model size (in B parameters):") D = gr.Number(value=2000, label="Dataset size (in B tokens):") button = gr.Button("Compute!") plot = gr.Plot(value=plt) md = gr.Markdown("") button.click(fn=compute, inputs=[N, D], outputs=[md, plot]) demo.load(fn=compute, inputs=[N, D], outputs=[md, plot]) demo.launch()