import gradio as gr
import tensorflow as tf
import tensorflow_hub as hub
from PIL import Image
import numpy as np
from tensorflow.keras.preprocessing.image import img_to_array, load_img
# Loading saved model
model = tf.keras.models.load_model('cats_vs_dogs.h5', custom_objects={'KerasLayer': hub.KerasLayer})
def predict(input_image):
try:
# Convert PIL Image to Numpy array
input_image = img_to_array(input_image)
# Resize the Numpy array
input_image = np.resize(input_image, (224, 224, 3))
input_image = np.array(input_image).astype(np.float32) / 255.0
input_image = np.expand_dims(input_image, axis=0)
# Making prediction
prediction = model.predict(input_image)
# Postprocess prediction
labels = ['Cat', 'Dog']
threshold = 0.5 # threshold for classifying as 'Dog'
predicted_class = 'Dog' if prediction[0] > threshold else 'Cat'
prediction_probability = prediction[0] if predicted_class == 'Dog' else 1 - prediction[0]
cat_emoji = "\U0001F408" # Cat emoji
dog_emoji = "\U0001F415" # Dog emoji
selected_emoji = dog_emoji if predicted_class == 'Dog' else cat_emoji
# Combine the predicted class and the probability into a single string
output = f"{selected_emoji} {predicted_class}"
return output
except Exception as e:
return str(e)
examples = ["dog.jpg",
"cat.jpg"]
# Creating Gradio interface
iface = gr.Interface(
fn=predict,
inputs=gr.inputs.Image(shape=(224, 224)),
outputs="text",
title = '🐱 x 🐶 Image Recognition - Cats vs Dogs with Resnet 101 V2 🐱 x 🐶',
description="""
This model was trained to predict whether an image contains a cat or a dog.
You can see how this model was trained on the following Kaggle Notebook.
Upload a photo to see the how the model predicts!""",
examples = examples
)
iface.launch()