Spaces:
Runtime error
Runtime error
""" | |
Various utilities for neural networks. | |
""" | |
import math | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class GroupNorm32(nn.GroupNorm): | |
def __init__(self, num_groups, num_channels, swish, eps=1e-5): | |
super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) | |
self.swish = swish | |
def forward(self, x): | |
y = super().forward(x.float()).to(x.dtype) | |
if self.swish == 1.0: | |
y = F.silu(y) | |
elif self.swish: | |
y = y * F.sigmoid(y * float(self.swish)) | |
return y | |
def conv_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D convolution module. | |
""" | |
if dims == 1: | |
return nn.Conv1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.Conv2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.Conv3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def linear(*args, **kwargs): | |
""" | |
Create a linear module. | |
""" | |
return nn.Linear(*args, **kwargs) | |
def avg_pool_nd(dims, *args, **kwargs): | |
""" | |
Create a 1D, 2D, or 3D average pooling module. | |
""" | |
if dims == 1: | |
return nn.AvgPool1d(*args, **kwargs) | |
elif dims == 2: | |
return nn.AvgPool2d(*args, **kwargs) | |
elif dims == 3: | |
return nn.AvgPool3d(*args, **kwargs) | |
raise ValueError(f"unsupported dimensions: {dims}") | |
def zero_module(module): | |
""" | |
Zero out the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
def scale_module(module, scale): | |
""" | |
Scale the parameters of a module and return it. | |
""" | |
for p in module.parameters(): | |
p.detach().mul_(scale) | |
return module | |
def normalization(channels, swish=0.0): | |
""" | |
Make a standard normalization layer, with an optional swish activation. | |
:param channels: number of input channels. | |
:return: an nn.Module for normalization. | |
""" | |
return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) | |
def timestep_embedding(timesteps, dim, max_period=10000): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param timesteps: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an [N x dim] Tensor of positional embeddings. | |
""" | |
half = dim // 2 | |
freqs = th.exp( | |
-math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half | |
).to(device=timesteps.device) | |
args = timesteps[:, None].float() * freqs[None] | |
embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) | |
if dim % 2: | |
embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) | |
return embedding | |