Spaces:
Runtime error
Runtime error
import gradio as gr | |
import tensorflow as tf | |
import numpy as np | |
from tensorflow.keras.preprocessing.image import img_to_array | |
from keras.datasets import mnist | |
(X_train, y_train), (X_test, y_test) = mnist.load_data() | |
X_train = X_train/255.0 | |
X_test = X_test/255.0 | |
model = tf.keras.models.Sequential([ | |
tf.keras.layers.Flatten(input_shape=(28, 28)), | |
tf.keras.layers.Dense(units=128, activation='relu'), | |
tf.keras.layers.Dropout(0.5), | |
tf.keras.layers.Dense(units=10,activation="softmax") | |
]) | |
model.compile(optimizer='adam', | |
loss='sparse_categorical_crossentropy', | |
metrics=['accuracy'] | |
) | |
history = model.fit(X_train,y_train,epochs=10,validation_data=(X_test,y_test)) | |
def predict(img): | |
x = img_to_array(img) | |
x = np.expand_dims(x,axis=0) | |
target = model.predict(x) | |
target = np.argmax(target) | |
return target | |
demo = gr.Interface(fn=predict, | |
inputs="sketchpad", | |
outputs="number", | |
live=True, streaming=True) | |
demo.launch() |