File size: 9,837 Bytes
043739c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import os
import json
from dotenv import load_dotenv
import uuid
from datetime import datetime
from groq import Groq
from constants import SYSTEM_PROMPT, INTERVIEW_INSTRUCTIONS, MOCK_INTERVIEW_PROMPT,EXPECTED_OUTPUT
from constants import JOB_MATCHING_INSTRUCTIONS,JOB_MATCHING_PROMPT,JOB_ROLES
from phi.agent import Agent
from phi.model.google import Gemini
from phi.tools.duckduckgo import DuckDuckGo
from elevenlabs.client import ElevenLabs
from elevenlabs import VoiceSettings
from gradio import (
Blocks, Chatbot, Row, Column, Radio, Dropdown,
Button, Audio, Textbox, State, HTML
)
load_dotenv()
# Initialize clients
eleven_client = ElevenLabs(api_key=os.getenv("ELEVEN_API_KEY"))
groq_client = Groq(api_key=os.getenv("GROQ_API_KEY"))
def get_current_datetime() -> str:
return json.dumps({
"current_datetime": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
})
def create_agent(mode):
base_config = {
"model": Gemini(id="gemini-2.0-flash-exp", api_key=os.getenv("GOOGLE_API_KEY")),
"show_tool_calls": True,
"tools": [DuckDuckGo(fixed_max_results=10), get_current_datetime],
"add_history_to_messages": True,
}
if mode == "Interview Guide":
return Agent(
**base_config,
system_prompt=SYSTEM_PROMPT,
instructions=INTERVIEW_INSTRUCTIONS,
num_history_responses=6,
expected_output=EXPECTED_OUTPUT
)
elif mode == "Job Matching":
return Agent(
**base_config,
system_prompt=JOB_MATCHING_PROMPT,
instructions=JOB_MATCHING_INSTRUCTIONS,
)
else:
return Agent(
**base_config,
system_prompt=MOCK_INTERVIEW_PROMPT,
instructions=["Conduct a technical mock interview.", "Ask one question at a time.", "Evaluate the candidate's responses in simple concise words"],
num_history_responses=3,
)
def text_to_speech_file(text: str, client: ElevenLabs) -> str:
"""
Converts text to speech using ElevenLabs API and saves as MP3.
Args:
text (str): Text to convert to speech
client (ElevenLabs): Initialized ElevenLabs client
Returns:
str: Path to saved audio file
"""
try:
response = client.text_to_speech.convert(
voice_id="pNInz6obpgDQGcFmaJgB", # Adam voice
optimize_streaming_latency="0",
output_format="mp3_22050_32",
text=text,
model_id="eleven_turbo_v2",
voice_settings=VoiceSettings(
stability=0.0,
similarity_boost=1.0,
style=0.0,
use_speaker_boost=True,
),
)
save_file_path = f"{uuid.uuid4()}.mp3"
with open(save_file_path, "wb") as f:
for chunk in response:
if chunk:
f.write(chunk)
return save_file_path
except Exception as e:
raise Exception(f"Text-to-speech conversion failed: {str(e)}")
def handle_mock_interview(audio_path, history, agent_state, voice_choice):
"""Handle audio for Mock Interview mode"""
if not audio_path:
return history, agent_state, None, ""
try:
# Transcribe audio
with open(audio_path, "rb") as audio_file:
transcription = groq_client.audio.transcriptions.create(
file=("recording.wav", audio_file.read(), "audio/wav"),
model="whisper-large-v3-turbo",
response_format="text"
)
# Initialize agent if needed
if "agent" not in agent_state or agent_state.get("mode") != "Mock Interview":
agent_state["agent"] = create_agent("Mock Interview")
agent_state["mode"] = "Mock Interview"
# Get agent response
agent = agent_state["agent"]
response = agent.run(transcription).content
try:
# Generate audio using the improved text-to-speech function
audio_output = text_to_speech_file(response, eleven_client)
# Update history
history.append({"role": "user", "content": f"[Audio]: {transcription}"})
history.append({"role": "assistant", "content": response})
return history, agent_state, audio_output, ""
except Exception as audio_error:
return history, agent_state, None, f"Audio generation error: {str(audio_error)}"
except Exception as e:
return history, agent_state, None, f"Error: {str(e)}"
def handle_text_input(message, history, mode, agent_state):
"""Handle text input for Interview Guide mode"""
if not message.strip():
return history, agent_state, "", ""
if "agent" not in agent_state or agent_state.get("mode") != mode:
agent_state["agent"] = create_agent(mode)
agent_state["mode"] = mode
agent = agent_state["agent"]
history = history + [{"role": "user", "content": message}]
try:
# Using direct response instead of streaming
response = agent.run(message).content
history.append({"role": "assistant", "content": response})
return history, agent_state, "", ""
except Exception as e:
return history, agent_state, "", f"Error: {str(e)}"
def handle_job_matching(role, experience, location, history, agent_state):
"""Handle job matching mode inputs"""
# Initialize history if None
if history is None:
history = []
# Initialize agent_state if None
if agent_state is None:
agent_state = {}
if not all([role, experience, location]):
return history, agent_state, "Please fill in all fields"
# Initialize agent if needed
if "agent" not in agent_state or agent_state.get("mode") != "Job Matching":
agent_state["agent"] = create_agent("Job Matching")
agent_state["mode"] = "Job Matching"
query = f"""Find relevant jobs for:
Role: {role}
Experience: {experience}
Location: {location}
Please search for current job listings and provide details including:
1. Company name
2. Job title
3. Location
4. Key requirements
5. Application link or process
"""
try:
agent = agent_state["agent"]
history = history + [{"role": "user", "content": query}]
response = agent.run(query).content
history.append({"role": "assistant", "content": response})
return history, agent_state, ""
except Exception as e:
return history, agent_state, f"Error: {str(e)}"
def clear_chat():
return [], {}, None, ""
with Blocks(title="AI Interview Assistant") as demo:
# State
chat_history = State([])
agent_state = State({})
mode = Radio(
choices=["Interview Guide", "Mock Interview", "Job Matching"],
label="Mode",
value="Interview Guide"
)
chatbot = Chatbot(label="Conversation", height=500, type="messages")
error_msg = HTML()
with Row():
with Column(visible=True) as text_col:
text_input = Textbox(
label="Type your message",
placeholder="Ask about interview preparation...",
lines=3
)
submit_btn = Button("Send Message")
# Audio input for Mock Interview
with Column(visible=False) as audio_col:
voice_select = Dropdown(
choices=["Brian", "Rachel", "Sam"],
value="Brian",
label="Assistant Voice"
)
audio_input = Audio(
sources=["microphone"],
type="filepath",
label="Record your answer"
)
audio_output = Audio(
label="Assistant's Response",
visible=True
)
with Column(visible=False) as job_col:
role_select = Dropdown(
choices=JOB_ROLES,
label="Select Job Role",
value="Software Engineer"
)
experience = Dropdown(
choices=["0-2 years", "2-5 years", "5-8 years", "8+ years"],
label="Experience Level",
value="0-2 years"
)
location = Textbox(
label="Preferred Location",
placeholder="Enter city, state, or 'Remote'",
lines=1
)
search_btn = Button("Search Jobs")
# Clear button
clear_btn = Button("Clear Chat")
# Event handlers
def update_mode(mode_value):
return (
Column(visible=mode_value == "Interview Guide"),
Column(visible=mode_value == "Mock Interview"),
Column(visible=mode_value == "Job Matching")
)
mode.change(
update_mode,
inputs=[mode],
outputs=[text_col,audio_col,job_col]
)
submit_btn.click(
handle_text_input,
inputs=[text_input, chat_history, mode, agent_state],
outputs=[chatbot, agent_state, text_input, error_msg]
)
audio_input.change(
handle_mock_interview,
inputs=[audio_input, chat_history, agent_state, voice_select],
outputs=[chatbot, agent_state, audio_output, error_msg]
)
search_btn.click(
handle_job_matching,
inputs=[role_select, experience, location, chat_history, agent_state],
outputs=[chatbot, agent_state, error_msg]
)
clear_btn.click(
clear_chat,
outputs=[chat_history, agent_state, audio_output, error_msg]
)
if __name__ == "__main__":
demo.launch() |