import gradio as gr import tensorflow as tf import tensorflow_hub as hub import matplotlib.pyplot as plt import numpy as np import PIL.Image # Load model from TF-Hub hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2') # Function to convert tensor to image def tensor_to_image(tensor): tensor = tensor*255 tensor = np.array(tensor, dtype=np.uint8) if np.ndim(tensor)>3: assert tensor.shape[0] == 1 tensor = tensor[0] return PIL.Image.fromarray(tensor) # Stylize function def stylize(content_image, style_image): # Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]. Example using numpy: content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255. style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255. # Stylize image stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0] return tensor_to_image(stylized_image) # Add image examples for users joker = ["example_joker.jpeg", "example_polasticot1.jpeg"] paris = ["example_paris.jpeg", "example_vangogh.jpeg"] einstein = ["example_einstein.jpeg", "example_polasticot2.jpeg"] # Customize interface title = "Fast Neural Style Transfer using TF-Hub" description = "Demo for neural style transfer using the pretrained Arbitrary Image Stylization model from TensorFlow Hub." article = "
Exploring the structure of a real-time, arbitrary neural artistic stylization network
" content_input = gr.inputs.Image(label="Content Image", source="upload") style_input = gr.inputs.Image(label="Style Image", source="upload") # Build and launch iface = gr.Interface(fn=stylize, inputs=[content_input, style_input], outputs="image", title=title, description=description, article=article, examples=[joker, paris, einstein]) iface.launch()