Spaces:
Runtime error
Runtime error
luca-martial
commited on
Commit
·
a96c0a1
1
Parent(s):
b71afd7
new comments
Browse files
app.py
CHANGED
@@ -5,8 +5,10 @@ import matplotlib.pyplot as plt
|
|
5 |
import numpy as np
|
6 |
import PIL.Image
|
7 |
|
|
|
8 |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
9 |
|
|
|
10 |
def tensor_to_image(tensor):
|
11 |
tensor = tensor*255
|
12 |
tensor = np.array(tensor, dtype=np.uint8)
|
@@ -15,20 +17,27 @@ def tensor_to_image(tensor):
|
|
15 |
tensor = tensor[0]
|
16 |
return PIL.Image.fromarray(tensor)
|
17 |
|
|
|
18 |
def stylize(content_image, style_image):
|
|
|
19 |
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
|
20 |
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
|
|
|
21 |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
|
22 |
return tensor_to_image(stylized_image)
|
23 |
-
|
|
|
24 |
paris =[["example_paris.jpeg"], ["example_vangogh.jpeg"]]
|
25 |
aristotle = [["example_aristotle.jpeg"], ["example_dali.jpeg"]]
|
26 |
avatar = [["example_avatar.jpeg"], ["example_kandinsky.jpeg"]]
|
|
|
|
|
27 |
title = "Fast Neural Style Transfer using TF-Hub"
|
28 |
-
description = "
|
29 |
content_input = gr.inputs.Image(label="Content Image", source="upload")
|
30 |
style_input = gr.inputs.Image(label="Style Image", source="upload")
|
31 |
|
|
|
32 |
iface = gr.Interface(fn=stylize,
|
33 |
inputs=[content_input, style_input],
|
34 |
outputs="image",
|
|
|
5 |
import numpy as np
|
6 |
import PIL.Image
|
7 |
|
8 |
+
# Load model from TF-Hub
|
9 |
hub_model = hub.load('https://tfhub.dev/google/magenta/arbitrary-image-stylization-v1-256/2')
|
10 |
|
11 |
+
# Function to convert tensor to image
|
12 |
def tensor_to_image(tensor):
|
13 |
tensor = tensor*255
|
14 |
tensor = np.array(tensor, dtype=np.uint8)
|
|
|
17 |
tensor = tensor[0]
|
18 |
return PIL.Image.fromarray(tensor)
|
19 |
|
20 |
+
# Stylize function
|
21 |
def stylize(content_image, style_image):
|
22 |
+
# Convert to float32 numpy array, add batch dimension, and normalize to range [0, 1]. Example using numpy:
|
23 |
content_image = content_image.astype(np.float32)[np.newaxis, ...] / 255.
|
24 |
style_image = style_image.astype(np.float32)[np.newaxis, ...] / 255.
|
25 |
+
# Stylize image
|
26 |
stylized_image = hub_model(tf.constant(content_image), tf.constant(style_image))[0]
|
27 |
return tensor_to_image(stylized_image)
|
28 |
+
|
29 |
+
# Add image examples for users
|
30 |
paris =[["example_paris.jpeg"], ["example_vangogh.jpeg"]]
|
31 |
aristotle = [["example_aristotle.jpeg"], ["example_dali.jpeg"]]
|
32 |
avatar = [["example_avatar.jpeg"], ["example_kandinsky.jpeg"]]
|
33 |
+
|
34 |
+
# Customize interface
|
35 |
title = "Fast Neural Style Transfer using TF-Hub"
|
36 |
+
description = "\nDemo for neural style transfer using the pretrained Arbitrary Image Stylization model from TensorFlow Hub.\n"
|
37 |
content_input = gr.inputs.Image(label="Content Image", source="upload")
|
38 |
style_input = gr.inputs.Image(label="Style Image", source="upload")
|
39 |
|
40 |
+
# Build and launch
|
41 |
iface = gr.Interface(fn=stylize,
|
42 |
inputs=[content_input, style_input],
|
43 |
outputs="image",
|