hf_hub_api_demo / train_model.py
louiecerv's picture
sync with remove
fa189e6
from datasets import load_dataset
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer
from transformers import AutoTokenizer
import torch
# Load the dataset
dataset = load_dataset("louiecerv/sentiment_analysis")
# Load tokenizer
model_checkpoint = "distilbert-base-uncased"
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint)
# Tokenize function
def tokenize_function(examples):
return tokenizer(examples["text"], padding="max_length", truncation=True)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Prepare dataset for training
train_dataset = tokenized_datasets["train"]
# Load model
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2)
# Training arguments
training_args = TrainingArguments(
output_dir="./results",
eval_strategy="no",
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
num_train_epochs=3,
save_strategy="epoch",
push_to_hub=True,
hub_model_id="louiecerv/sentiment_analysis_model"
)
# Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset
)
# Train and save model
trainer.train()
trainer.push_to_hub()