Spaces:
Sleeping
Sleeping
from datasets import load_dataset | |
from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer | |
from transformers import AutoTokenizer | |
import torch | |
# Load the dataset | |
dataset = load_dataset("louiecerv/sentiment_analysis") | |
# Load tokenizer | |
model_checkpoint = "distilbert-base-uncased" | |
tokenizer = AutoTokenizer.from_pretrained(model_checkpoint) | |
# Tokenize function | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], padding="max_length", truncation=True) | |
tokenized_datasets = dataset.map(tokenize_function, batched=True) | |
# Prepare dataset for training | |
train_dataset = tokenized_datasets["train"] | |
# Load model | |
model = AutoModelForSequenceClassification.from_pretrained(model_checkpoint, num_labels=2) | |
# Training arguments | |
training_args = TrainingArguments( | |
output_dir="./results", | |
eval_strategy="no", | |
per_device_train_batch_size=8, | |
per_device_eval_batch_size=8, | |
num_train_epochs=3, | |
save_strategy="epoch", | |
push_to_hub=True, | |
hub_model_id="louiecerv/sentiment_analysis_model" | |
) | |
# Trainer | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
train_dataset=train_dataset | |
) | |
# Train and save model | |
trainer.train() | |
trainer.push_to_hub() | |