Spaces:
Runtime error
Runtime error
File size: 2,162 Bytes
732fdf3 56e5734 732fdf3 122cbad d240045 122cbad 673114e 122cbad d45c3dc 122cbad d45c3dc 122cbad d45c3dc 647f25b fdd79a3 647f25b fdd79a3 647f25b fdd79a3 647f25b fdd79a3 647f25b fb4a63f 0feaf78 56e5734 d240045 8a52da0 9ee63d4 56e5734 fb4a63f d240045 56e5734 2ad87b7 d9780b1 2ad87b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
#downloading tokenizer and model
tokenizer = AutoTokenizer.from_pretrained("tuner007/pegasus_summarizer")
model = AutoModelForSeq2SeqLM.from_pretrained("tuner007/pegasus_summarizer")
st.markdown(""" <style> .font {
font-size:50px ; font-family: "Helvetica"; color: #FF9633;}
</style> """, unsafe_allow_html=True)
st.markdown('<p class="font">Now anyone can be a content marketer!</p>', unsafe_allow_html=True)
st.markdown('#')
st.subheader("Don't you wish there was a faster way to summarise your news articles and share it up onto your favourite social media platforms.")
st.markdown('##')
st.markdown(""" #### LorSor helps you through a simple 3 stage process.
Step 1: Copy and paste the complete article text in here
(*Coming soon* - Just paste the article URL)
Step 2: Evaluate the generated summary and make minor edits as required
Step 3: Copy and paste the summary when posting the article link to your social media
(*Coming soon* - Login to social media and schedule your post and we'll automate the process)
Kick back and think about what you're going to do with all the time that you've saved!
Send any feedback to [us](mailto:[email protected]) """)
st.markdown('#')
col1, col2 = st.columns(2)
with col1:
col1.header("Step 1:")
raw_text = st.text_area('Paste the full article text to summarize here...')
st.button("Summarize this")
def get_response(input_text):
batch = tokenizer([input_text],truncation=True,padding='longest',max_length=1024, return_tensors="pt").to('cpu')
gen_out = model.generate(**batch,max_length=128,num_beams=5, num_return_sequences=1, temperature=1.5)
output_text = tokenizer.batch_decode(gen_out, skip_special_tokens=True)
return output_text
if len(raw_text) < 10:
summary = "Lorem Ipsum is a long and boring piece of old latin text. What it means i have no idea"
else:
summary = get_response(raw_text)
with col2:
col2.header("Step 2:")
y = st.text_area("Here is the completed summary for you to edit", summary)
st.button("Submit edits") |