Commit
·
b083a19
0
Parent(s):
Duplicate from hysts/LoRA-SD-training
Browse files- .gitattributes +34 -0
- .gitignore +164 -0
- .gitmodules +3 -0
- .pre-commit-config.yaml +35 -0
- .style.yapf +5 -0
- LICENSE +21 -0
- README.md +14 -0
- app.py +280 -0
- inference.py +93 -0
- lora +1 -0
- requirements.txt +10 -0
- style.css +3 -0
- trainer.py +121 -0
- uploader.py +20 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
training_data/
|
2 |
+
results/
|
3 |
+
|
4 |
+
|
5 |
+
# Byte-compiled / optimized / DLL files
|
6 |
+
__pycache__/
|
7 |
+
*.py[cod]
|
8 |
+
*$py.class
|
9 |
+
|
10 |
+
# C extensions
|
11 |
+
*.so
|
12 |
+
|
13 |
+
# Distribution / packaging
|
14 |
+
.Python
|
15 |
+
build/
|
16 |
+
develop-eggs/
|
17 |
+
dist/
|
18 |
+
downloads/
|
19 |
+
eggs/
|
20 |
+
.eggs/
|
21 |
+
lib/
|
22 |
+
lib64/
|
23 |
+
parts/
|
24 |
+
sdist/
|
25 |
+
var/
|
26 |
+
wheels/
|
27 |
+
share/python-wheels/
|
28 |
+
*.egg-info/
|
29 |
+
.installed.cfg
|
30 |
+
*.egg
|
31 |
+
MANIFEST
|
32 |
+
|
33 |
+
# PyInstaller
|
34 |
+
# Usually these files are written by a python script from a template
|
35 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
36 |
+
*.manifest
|
37 |
+
*.spec
|
38 |
+
|
39 |
+
# Installer logs
|
40 |
+
pip-log.txt
|
41 |
+
pip-delete-this-directory.txt
|
42 |
+
|
43 |
+
# Unit test / coverage reports
|
44 |
+
htmlcov/
|
45 |
+
.tox/
|
46 |
+
.nox/
|
47 |
+
.coverage
|
48 |
+
.coverage.*
|
49 |
+
.cache
|
50 |
+
nosetests.xml
|
51 |
+
coverage.xml
|
52 |
+
*.cover
|
53 |
+
*.py,cover
|
54 |
+
.hypothesis/
|
55 |
+
.pytest_cache/
|
56 |
+
cover/
|
57 |
+
|
58 |
+
# Translations
|
59 |
+
*.mo
|
60 |
+
*.pot
|
61 |
+
|
62 |
+
# Django stuff:
|
63 |
+
*.log
|
64 |
+
local_settings.py
|
65 |
+
db.sqlite3
|
66 |
+
db.sqlite3-journal
|
67 |
+
|
68 |
+
# Flask stuff:
|
69 |
+
instance/
|
70 |
+
.webassets-cache
|
71 |
+
|
72 |
+
# Scrapy stuff:
|
73 |
+
.scrapy
|
74 |
+
|
75 |
+
# Sphinx documentation
|
76 |
+
docs/_build/
|
77 |
+
|
78 |
+
# PyBuilder
|
79 |
+
.pybuilder/
|
80 |
+
target/
|
81 |
+
|
82 |
+
# Jupyter Notebook
|
83 |
+
.ipynb_checkpoints
|
84 |
+
|
85 |
+
# IPython
|
86 |
+
profile_default/
|
87 |
+
ipython_config.py
|
88 |
+
|
89 |
+
# pyenv
|
90 |
+
# For a library or package, you might want to ignore these files since the code is
|
91 |
+
# intended to run in multiple environments; otherwise, check them in:
|
92 |
+
# .python-version
|
93 |
+
|
94 |
+
# pipenv
|
95 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
96 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
97 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
98 |
+
# install all needed dependencies.
|
99 |
+
#Pipfile.lock
|
100 |
+
|
101 |
+
# poetry
|
102 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
103 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
104 |
+
# commonly ignored for libraries.
|
105 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
106 |
+
#poetry.lock
|
107 |
+
|
108 |
+
# pdm
|
109 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
110 |
+
#pdm.lock
|
111 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
112 |
+
# in version control.
|
113 |
+
# https://pdm.fming.dev/#use-with-ide
|
114 |
+
.pdm.toml
|
115 |
+
|
116 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
117 |
+
__pypackages__/
|
118 |
+
|
119 |
+
# Celery stuff
|
120 |
+
celerybeat-schedule
|
121 |
+
celerybeat.pid
|
122 |
+
|
123 |
+
# SageMath parsed files
|
124 |
+
*.sage.py
|
125 |
+
|
126 |
+
# Environments
|
127 |
+
.env
|
128 |
+
.venv
|
129 |
+
env/
|
130 |
+
venv/
|
131 |
+
ENV/
|
132 |
+
env.bak/
|
133 |
+
venv.bak/
|
134 |
+
|
135 |
+
# Spyder project settings
|
136 |
+
.spyderproject
|
137 |
+
.spyproject
|
138 |
+
|
139 |
+
# Rope project settings
|
140 |
+
.ropeproject
|
141 |
+
|
142 |
+
# mkdocs documentation
|
143 |
+
/site
|
144 |
+
|
145 |
+
# mypy
|
146 |
+
.mypy_cache/
|
147 |
+
.dmypy.json
|
148 |
+
dmypy.json
|
149 |
+
|
150 |
+
# Pyre type checker
|
151 |
+
.pyre/
|
152 |
+
|
153 |
+
# pytype static type analyzer
|
154 |
+
.pytype/
|
155 |
+
|
156 |
+
# Cython debug symbols
|
157 |
+
cython_debug/
|
158 |
+
|
159 |
+
# PyCharm
|
160 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
161 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
162 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
163 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
164 |
+
#.idea/
|
.gitmodules
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[submodule "lora"]
|
2 |
+
path = lora
|
3 |
+
url = https://github.com/cloneofsimo/lora
|
.pre-commit-config.yaml
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
repos:
|
2 |
+
- repo: https://github.com/pre-commit/pre-commit-hooks
|
3 |
+
rev: v4.2.0
|
4 |
+
hooks:
|
5 |
+
- id: check-executables-have-shebangs
|
6 |
+
- id: check-json
|
7 |
+
- id: check-merge-conflict
|
8 |
+
- id: check-shebang-scripts-are-executable
|
9 |
+
- id: check-toml
|
10 |
+
- id: check-yaml
|
11 |
+
- id: double-quote-string-fixer
|
12 |
+
- id: end-of-file-fixer
|
13 |
+
- id: mixed-line-ending
|
14 |
+
args: ['--fix=lf']
|
15 |
+
- id: requirements-txt-fixer
|
16 |
+
- id: trailing-whitespace
|
17 |
+
- repo: https://github.com/myint/docformatter
|
18 |
+
rev: v1.4
|
19 |
+
hooks:
|
20 |
+
- id: docformatter
|
21 |
+
args: ['--in-place']
|
22 |
+
- repo: https://github.com/pycqa/isort
|
23 |
+
rev: 5.10.1
|
24 |
+
hooks:
|
25 |
+
- id: isort
|
26 |
+
- repo: https://github.com/pre-commit/mirrors-mypy
|
27 |
+
rev: v0.991
|
28 |
+
hooks:
|
29 |
+
- id: mypy
|
30 |
+
args: ['--ignore-missing-imports']
|
31 |
+
- repo: https://github.com/google/yapf
|
32 |
+
rev: v0.32.0
|
33 |
+
hooks:
|
34 |
+
- id: yapf
|
35 |
+
args: ['--parallel', '--in-place']
|
.style.yapf
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[style]
|
2 |
+
based_on_style = pep8
|
3 |
+
blank_line_before_nested_class_or_def = false
|
4 |
+
spaces_before_comment = 2
|
5 |
+
split_before_logical_operator = true
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2022 hysts
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: LoRA + SD Training
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.12.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: mit
|
11 |
+
duplicated_from: hysts/LoRA-SD-training
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
"""Unofficial demo app for https://github.com/cloneofsimo/lora.
|
3 |
+
|
4 |
+
The code in this repo is partly adapted from the following repository:
|
5 |
+
https://huggingface.co/spaces/multimodalart/dreambooth-training/tree/a00184917aa273c6d8adab08d5deb9b39b997938
|
6 |
+
The license of the original code is MIT, which is specified in the README.md.
|
7 |
+
"""
|
8 |
+
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
import os
|
12 |
+
import pathlib
|
13 |
+
|
14 |
+
import gradio as gr
|
15 |
+
import torch
|
16 |
+
|
17 |
+
from inference import InferencePipeline
|
18 |
+
from trainer import Trainer
|
19 |
+
from uploader import upload
|
20 |
+
|
21 |
+
TITLE = '# LoRA + StableDiffusion Training UI'
|
22 |
+
DESCRIPTION = 'This is an unofficial demo for [https://github.com/cloneofsimo/lora](https://github.com/cloneofsimo/lora).'
|
23 |
+
|
24 |
+
ORIGINAL_SPACE_ID = 'hysts/LoRA-SD-training'
|
25 |
+
SPACE_ID = os.getenv('SPACE_ID', ORIGINAL_SPACE_ID)
|
26 |
+
SHARED_UI_WARNING = f'''# Attention - This Space doesn't work in this shared UI. You can duplicate and use it with a paid private T4 GPU.
|
27 |
+
|
28 |
+
<center><a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a></center>
|
29 |
+
'''
|
30 |
+
if os.getenv('SYSTEM') == 'spaces' and SPACE_ID != ORIGINAL_SPACE_ID:
|
31 |
+
SETTINGS = f'<a href="https://huggingface.co/spaces/{SPACE_ID}/settings">Settings</a>'
|
32 |
+
|
33 |
+
else:
|
34 |
+
SETTINGS = 'Settings'
|
35 |
+
CUDA_NOT_AVAILABLE_WARNING = f'''# Attention - Running on CPU.
|
36 |
+
<center>
|
37 |
+
You can assign a GPU in the {SETTINGS} tab if you are running this on HF Spaces.
|
38 |
+
"T4 small" is sufficient to run this demo.
|
39 |
+
</center>
|
40 |
+
'''
|
41 |
+
|
42 |
+
|
43 |
+
def show_warning(warning_text: str) -> gr.Blocks:
|
44 |
+
with gr.Blocks() as demo:
|
45 |
+
with gr.Box():
|
46 |
+
gr.Markdown(warning_text)
|
47 |
+
return demo
|
48 |
+
|
49 |
+
|
50 |
+
def update_output_files() -> dict:
|
51 |
+
paths = sorted(pathlib.Path('results').glob('*.pt'))
|
52 |
+
paths = [path.as_posix() for path in paths] # type: ignore
|
53 |
+
return gr.update(value=paths or None)
|
54 |
+
|
55 |
+
|
56 |
+
def create_training_demo(trainer: Trainer,
|
57 |
+
pipe: InferencePipeline) -> gr.Blocks:
|
58 |
+
with gr.Blocks() as demo:
|
59 |
+
base_model = gr.Dropdown(
|
60 |
+
choices=['stabilityai/stable-diffusion-2-1-base'],
|
61 |
+
value='stabilityai/stable-diffusion-2-1-base',
|
62 |
+
label='Base Model',
|
63 |
+
visible=False)
|
64 |
+
resolution = gr.Dropdown(choices=['512'],
|
65 |
+
value='512',
|
66 |
+
label='Resolution',
|
67 |
+
visible=False)
|
68 |
+
|
69 |
+
with gr.Row():
|
70 |
+
with gr.Box():
|
71 |
+
gr.Markdown('Training Data')
|
72 |
+
concept_images = gr.Files(label='Images for your concept')
|
73 |
+
concept_prompt = gr.Textbox(label='Concept Prompt',
|
74 |
+
max_lines=1)
|
75 |
+
gr.Markdown('''
|
76 |
+
- Upload images of the style you are planning on training on.
|
77 |
+
- For a concept prompt, use a unique, made up word to avoid collisions.
|
78 |
+
''')
|
79 |
+
with gr.Box():
|
80 |
+
gr.Markdown('Training Parameters')
|
81 |
+
num_training_steps = gr.Number(
|
82 |
+
label='Number of Training Steps', value=1000, precision=0)
|
83 |
+
learning_rate = gr.Number(label='Learning Rate', value=0.0001)
|
84 |
+
train_text_encoder = gr.Checkbox(label='Train Text Encoder',
|
85 |
+
value=True)
|
86 |
+
learning_rate_text = gr.Number(
|
87 |
+
label='Learning Rate for Text Encoder', value=0.00005)
|
88 |
+
gradient_accumulation = gr.Number(
|
89 |
+
label='Number of Gradient Accumulation',
|
90 |
+
value=1,
|
91 |
+
precision=0)
|
92 |
+
fp16 = gr.Checkbox(label='FP16', value=True)
|
93 |
+
use_8bit_adam = gr.Checkbox(label='Use 8bit Adam', value=True)
|
94 |
+
gr.Markdown('''
|
95 |
+
- It will take about 8 minutes to train for 1000 steps with a T4 GPU.
|
96 |
+
- You may want to try a small number of steps first, like 1, to see if everything works fine in your environment.
|
97 |
+
- Note that your trained models will be deleted when the second training is started. You can upload your trained model in the "Upload" tab.
|
98 |
+
''')
|
99 |
+
|
100 |
+
run_button = gr.Button('Start Training')
|
101 |
+
with gr.Box():
|
102 |
+
with gr.Row():
|
103 |
+
check_status_button = gr.Button('Check Training Status')
|
104 |
+
with gr.Column():
|
105 |
+
with gr.Box():
|
106 |
+
gr.Markdown('Message')
|
107 |
+
training_status = gr.Markdown()
|
108 |
+
output_files = gr.Files(label='Trained Weight Files')
|
109 |
+
|
110 |
+
run_button.click(fn=pipe.clear)
|
111 |
+
run_button.click(fn=trainer.run,
|
112 |
+
inputs=[
|
113 |
+
base_model,
|
114 |
+
resolution,
|
115 |
+
concept_images,
|
116 |
+
concept_prompt,
|
117 |
+
num_training_steps,
|
118 |
+
learning_rate,
|
119 |
+
train_text_encoder,
|
120 |
+
learning_rate_text,
|
121 |
+
gradient_accumulation,
|
122 |
+
fp16,
|
123 |
+
use_8bit_adam,
|
124 |
+
],
|
125 |
+
outputs=[
|
126 |
+
training_status,
|
127 |
+
output_files,
|
128 |
+
],
|
129 |
+
queue=False)
|
130 |
+
check_status_button.click(fn=trainer.check_if_running,
|
131 |
+
inputs=None,
|
132 |
+
outputs=training_status,
|
133 |
+
queue=False)
|
134 |
+
check_status_button.click(fn=update_output_files,
|
135 |
+
inputs=None,
|
136 |
+
outputs=output_files,
|
137 |
+
queue=False)
|
138 |
+
return demo
|
139 |
+
|
140 |
+
|
141 |
+
def find_weight_files() -> list[str]:
|
142 |
+
curr_dir = pathlib.Path(__file__).parent
|
143 |
+
paths = sorted(curr_dir.rglob('*.pt'))
|
144 |
+
paths = [path for path in paths if not path.stem.endswith('.text_encoder')]
|
145 |
+
return [path.relative_to(curr_dir).as_posix() for path in paths]
|
146 |
+
|
147 |
+
|
148 |
+
def reload_lora_weight_list() -> dict:
|
149 |
+
return gr.update(choices=find_weight_files())
|
150 |
+
|
151 |
+
|
152 |
+
def create_inference_demo(pipe: InferencePipeline) -> gr.Blocks:
|
153 |
+
with gr.Blocks() as demo:
|
154 |
+
with gr.Row():
|
155 |
+
with gr.Column():
|
156 |
+
base_model = gr.Dropdown(
|
157 |
+
choices=['stabilityai/stable-diffusion-2-1-base'],
|
158 |
+
value='stabilityai/stable-diffusion-2-1-base',
|
159 |
+
label='Base Model',
|
160 |
+
visible=False)
|
161 |
+
reload_button = gr.Button('Reload Weight List')
|
162 |
+
lora_weight_name = gr.Dropdown(choices=find_weight_files(),
|
163 |
+
value='lora/lora_disney.pt',
|
164 |
+
label='LoRA Weight File')
|
165 |
+
prompt = gr.Textbox(
|
166 |
+
label='Prompt',
|
167 |
+
max_lines=1,
|
168 |
+
placeholder='Example: "style of sks, baby lion"')
|
169 |
+
alpha = gr.Slider(label='Alpha',
|
170 |
+
minimum=0,
|
171 |
+
maximum=2,
|
172 |
+
step=0.05,
|
173 |
+
value=1)
|
174 |
+
alpha_for_text = gr.Slider(label='Alpha for Text Encoder',
|
175 |
+
minimum=0,
|
176 |
+
maximum=2,
|
177 |
+
step=0.05,
|
178 |
+
value=1)
|
179 |
+
seed = gr.Slider(label='Seed',
|
180 |
+
minimum=0,
|
181 |
+
maximum=100000,
|
182 |
+
step=1,
|
183 |
+
value=1)
|
184 |
+
with gr.Accordion('Other Parameters', open=False):
|
185 |
+
num_steps = gr.Slider(label='Number of Steps',
|
186 |
+
minimum=0,
|
187 |
+
maximum=100,
|
188 |
+
step=1,
|
189 |
+
value=50)
|
190 |
+
guidance_scale = gr.Slider(label='CFG Scale',
|
191 |
+
minimum=0,
|
192 |
+
maximum=50,
|
193 |
+
step=0.1,
|
194 |
+
value=7)
|
195 |
+
|
196 |
+
run_button = gr.Button('Generate')
|
197 |
+
|
198 |
+
gr.Markdown('''
|
199 |
+
- Models with names starting with "lora/" are the pretrained models provided in the [original repo](https://github.com/cloneofsimo/lora), and the ones with names starting with "results/" are your trained models.
|
200 |
+
- After training, you can press "Reload Weight List" button to load your trained model names.
|
201 |
+
- The pretrained models for "disney", "illust" and "pop" are trained with the concept prompt "style of sks".
|
202 |
+
- The pretrained model for "kiriko" is trained with the concept prompt "game character bnha". For this model, the text encoder is also trained.
|
203 |
+
''')
|
204 |
+
with gr.Column():
|
205 |
+
result = gr.Image(label='Result')
|
206 |
+
|
207 |
+
reload_button.click(fn=reload_lora_weight_list,
|
208 |
+
inputs=None,
|
209 |
+
outputs=lora_weight_name)
|
210 |
+
prompt.submit(fn=pipe.run,
|
211 |
+
inputs=[
|
212 |
+
base_model,
|
213 |
+
lora_weight_name,
|
214 |
+
prompt,
|
215 |
+
alpha,
|
216 |
+
alpha_for_text,
|
217 |
+
seed,
|
218 |
+
num_steps,
|
219 |
+
guidance_scale,
|
220 |
+
],
|
221 |
+
outputs=result,
|
222 |
+
queue=False)
|
223 |
+
run_button.click(fn=pipe.run,
|
224 |
+
inputs=[
|
225 |
+
base_model,
|
226 |
+
lora_weight_name,
|
227 |
+
prompt,
|
228 |
+
alpha,
|
229 |
+
alpha_for_text,
|
230 |
+
seed,
|
231 |
+
num_steps,
|
232 |
+
guidance_scale,
|
233 |
+
],
|
234 |
+
outputs=result,
|
235 |
+
queue=False)
|
236 |
+
return demo
|
237 |
+
|
238 |
+
|
239 |
+
def create_upload_demo() -> gr.Blocks:
|
240 |
+
with gr.Blocks() as demo:
|
241 |
+
model_name = gr.Textbox(label='Model Name')
|
242 |
+
hf_token = gr.Textbox(
|
243 |
+
label='Hugging Face Token (with write permission)')
|
244 |
+
upload_button = gr.Button('Upload')
|
245 |
+
with gr.Box():
|
246 |
+
gr.Markdown('Message')
|
247 |
+
result = gr.Markdown()
|
248 |
+
gr.Markdown('''
|
249 |
+
- You can upload your trained model to your private Model repo (i.e. https://huggingface.co/{your_username}/{model_name}).
|
250 |
+
- You can find your Hugging Face token [here](https://huggingface.co/settings/tokens).
|
251 |
+
''')
|
252 |
+
|
253 |
+
upload_button.click(fn=upload,
|
254 |
+
inputs=[model_name, hf_token],
|
255 |
+
outputs=result)
|
256 |
+
|
257 |
+
return demo
|
258 |
+
|
259 |
+
|
260 |
+
pipe = InferencePipeline()
|
261 |
+
trainer = Trainer()
|
262 |
+
|
263 |
+
with gr.Blocks(css='style.css') as demo:
|
264 |
+
if os.getenv('IS_SHARED_UI'):
|
265 |
+
show_warning(SHARED_UI_WARNING)
|
266 |
+
if not torch.cuda.is_available():
|
267 |
+
show_warning(CUDA_NOT_AVAILABLE_WARNING)
|
268 |
+
|
269 |
+
gr.Markdown(TITLE)
|
270 |
+
gr.Markdown(DESCRIPTION)
|
271 |
+
|
272 |
+
with gr.Tabs():
|
273 |
+
with gr.TabItem('Train'):
|
274 |
+
create_training_demo(trainer, pipe)
|
275 |
+
with gr.TabItem('Test'):
|
276 |
+
create_inference_demo(pipe)
|
277 |
+
with gr.TabItem('Upload'):
|
278 |
+
create_upload_demo()
|
279 |
+
|
280 |
+
demo.queue(default_enabled=False).launch(share=False)
|
inference.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import gc
|
4 |
+
import pathlib
|
5 |
+
import sys
|
6 |
+
|
7 |
+
import gradio as gr
|
8 |
+
import PIL.Image
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionPipeline
|
11 |
+
|
12 |
+
sys.path.insert(0, 'lora')
|
13 |
+
from lora_diffusion import monkeypatch_lora, tune_lora_scale
|
14 |
+
|
15 |
+
|
16 |
+
class InferencePipeline:
|
17 |
+
def __init__(self):
|
18 |
+
self.pipe = None
|
19 |
+
self.device = torch.device(
|
20 |
+
'cuda:0' if torch.cuda.is_available() else 'cpu')
|
21 |
+
self.weight_path = None
|
22 |
+
|
23 |
+
def clear(self) -> None:
|
24 |
+
self.weight_path = None
|
25 |
+
del self.pipe
|
26 |
+
self.pipe = None
|
27 |
+
torch.cuda.empty_cache()
|
28 |
+
gc.collect()
|
29 |
+
|
30 |
+
@staticmethod
|
31 |
+
def get_lora_weight_path(name: str) -> pathlib.Path:
|
32 |
+
curr_dir = pathlib.Path(__file__).parent
|
33 |
+
return curr_dir / name
|
34 |
+
|
35 |
+
@staticmethod
|
36 |
+
def get_lora_text_encoder_weight_path(path: pathlib.Path) -> str:
|
37 |
+
parent_dir = path.parent
|
38 |
+
stem = path.stem
|
39 |
+
text_encoder_filename = f'{stem}.text_encoder.pt'
|
40 |
+
path = parent_dir / text_encoder_filename
|
41 |
+
return path.as_posix() if path.exists() else ''
|
42 |
+
|
43 |
+
def load_pipe(self, model_id: str, lora_filename: str) -> None:
|
44 |
+
weight_path = self.get_lora_weight_path(lora_filename)
|
45 |
+
if weight_path == self.weight_path:
|
46 |
+
return
|
47 |
+
self.weight_path = weight_path
|
48 |
+
lora_weight = torch.load(self.weight_path, map_location=self.device)
|
49 |
+
|
50 |
+
if self.device.type == 'cpu':
|
51 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id)
|
52 |
+
else:
|
53 |
+
pipe = StableDiffusionPipeline.from_pretrained(
|
54 |
+
model_id, torch_dtype=torch.float16)
|
55 |
+
pipe = pipe.to(self.device)
|
56 |
+
|
57 |
+
monkeypatch_lora(pipe.unet, lora_weight)
|
58 |
+
|
59 |
+
lora_text_encoder_weight_path = self.get_lora_text_encoder_weight_path(
|
60 |
+
weight_path)
|
61 |
+
if lora_text_encoder_weight_path:
|
62 |
+
lora_text_encoder_weight = torch.load(
|
63 |
+
lora_text_encoder_weight_path, map_location=self.device)
|
64 |
+
monkeypatch_lora(pipe.text_encoder,
|
65 |
+
lora_text_encoder_weight,
|
66 |
+
target_replace_module=['CLIPAttention'])
|
67 |
+
|
68 |
+
self.pipe = pipe
|
69 |
+
|
70 |
+
def run(
|
71 |
+
self,
|
72 |
+
base_model: str,
|
73 |
+
lora_weight_name: str,
|
74 |
+
prompt: str,
|
75 |
+
alpha: float,
|
76 |
+
alpha_for_text: float,
|
77 |
+
seed: int,
|
78 |
+
n_steps: int,
|
79 |
+
guidance_scale: float,
|
80 |
+
) -> PIL.Image.Image:
|
81 |
+
if not torch.cuda.is_available():
|
82 |
+
raise gr.Error('CUDA is not available.')
|
83 |
+
|
84 |
+
self.load_pipe(base_model, lora_weight_name)
|
85 |
+
|
86 |
+
generator = torch.Generator(device=self.device).manual_seed(seed)
|
87 |
+
tune_lora_scale(self.pipe.unet, alpha) # type: ignore
|
88 |
+
tune_lora_scale(self.pipe.text_encoder, alpha_for_text) # type: ignore
|
89 |
+
out = self.pipe(prompt,
|
90 |
+
num_inference_steps=n_steps,
|
91 |
+
guidance_scale=guidance_scale,
|
92 |
+
generator=generator) # type: ignore
|
93 |
+
return out.images[0]
|
lora
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 26787a09bff4ebcb08f0ad4e848b67bce4389a7a
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
accelerate==0.15.0
|
2 |
+
bitsandbytes==0.35.4
|
3 |
+
diffusers==0.10.2
|
4 |
+
ftfy==6.1.1
|
5 |
+
Pillow==9.3.0
|
6 |
+
torch==1.13.0
|
7 |
+
torchvision==0.14.0
|
8 |
+
transformers==4.25.1
|
9 |
+
triton==2.0.0.dev20220701
|
10 |
+
xformers==0.0.13
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|
trainer.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import os
|
4 |
+
import pathlib
|
5 |
+
import shlex
|
6 |
+
import shutil
|
7 |
+
import subprocess
|
8 |
+
|
9 |
+
import gradio as gr
|
10 |
+
import PIL.Image
|
11 |
+
import torch
|
12 |
+
|
13 |
+
os.environ['PYTHONPATH'] = f'lora:{os.getenv("PYTHONPATH", "")}'
|
14 |
+
|
15 |
+
|
16 |
+
def pad_image(image: PIL.Image.Image) -> PIL.Image.Image:
|
17 |
+
w, h = image.size
|
18 |
+
if w == h:
|
19 |
+
return image
|
20 |
+
elif w > h:
|
21 |
+
new_image = PIL.Image.new(image.mode, (w, w), (0, 0, 0))
|
22 |
+
new_image.paste(image, (0, (w - h) // 2))
|
23 |
+
return new_image
|
24 |
+
else:
|
25 |
+
new_image = PIL.Image.new(image.mode, (h, h), (0, 0, 0))
|
26 |
+
new_image.paste(image, ((h - w) // 2, 0))
|
27 |
+
return new_image
|
28 |
+
|
29 |
+
|
30 |
+
class Trainer:
|
31 |
+
def __init__(self):
|
32 |
+
self.is_running = False
|
33 |
+
self.is_running_message = 'Another training is in progress.'
|
34 |
+
|
35 |
+
self.output_dir = pathlib.Path('results')
|
36 |
+
self.instance_data_dir = self.output_dir / 'training_data'
|
37 |
+
|
38 |
+
def check_if_running(self) -> dict:
|
39 |
+
if self.is_running:
|
40 |
+
return gr.update(value=self.is_running_message)
|
41 |
+
else:
|
42 |
+
return gr.update(value='No training is running.')
|
43 |
+
|
44 |
+
def cleanup_dirs(self) -> None:
|
45 |
+
shutil.rmtree(self.output_dir, ignore_errors=True)
|
46 |
+
|
47 |
+
def prepare_dataset(self, concept_images: list, resolution: int) -> None:
|
48 |
+
self.instance_data_dir.mkdir(parents=True)
|
49 |
+
for i, temp_path in enumerate(concept_images):
|
50 |
+
image = PIL.Image.open(temp_path.name)
|
51 |
+
image = pad_image(image)
|
52 |
+
image = image.resize((resolution, resolution))
|
53 |
+
image = image.convert('RGB')
|
54 |
+
out_path = self.instance_data_dir / f'{i:03d}.jpg'
|
55 |
+
image.save(out_path, format='JPEG', quality=100)
|
56 |
+
|
57 |
+
def run(
|
58 |
+
self,
|
59 |
+
base_model: str,
|
60 |
+
resolution_s: str,
|
61 |
+
concept_images: list | None,
|
62 |
+
concept_prompt: str,
|
63 |
+
n_steps: int,
|
64 |
+
learning_rate: float,
|
65 |
+
train_text_encoder: bool,
|
66 |
+
learning_rate_text: float,
|
67 |
+
gradient_accumulation: int,
|
68 |
+
fp16: bool,
|
69 |
+
use_8bit_adam: bool,
|
70 |
+
) -> tuple[dict, list[pathlib.Path]]:
|
71 |
+
if not torch.cuda.is_available():
|
72 |
+
raise gr.Error('CUDA is not available.')
|
73 |
+
|
74 |
+
if self.is_running:
|
75 |
+
return gr.update(value=self.is_running_message), []
|
76 |
+
|
77 |
+
if concept_images is None:
|
78 |
+
raise gr.Error('You need to upload images.')
|
79 |
+
if not concept_prompt:
|
80 |
+
raise gr.Error('The concept prompt is missing.')
|
81 |
+
|
82 |
+
resolution = int(resolution_s)
|
83 |
+
|
84 |
+
self.cleanup_dirs()
|
85 |
+
self.prepare_dataset(concept_images, resolution)
|
86 |
+
|
87 |
+
command = f'''
|
88 |
+
accelerate launch lora/train_lora_dreambooth.py \
|
89 |
+
--pretrained_model_name_or_path={base_model} \
|
90 |
+
--instance_data_dir={self.instance_data_dir} \
|
91 |
+
--output_dir={self.output_dir} \
|
92 |
+
--instance_prompt="{concept_prompt}" \
|
93 |
+
--resolution={resolution} \
|
94 |
+
--train_batch_size=1 \
|
95 |
+
--gradient_accumulation_steps={gradient_accumulation} \
|
96 |
+
--learning_rate={learning_rate} \
|
97 |
+
--lr_scheduler=constant \
|
98 |
+
--lr_warmup_steps=0 \
|
99 |
+
--max_train_steps={n_steps}
|
100 |
+
'''
|
101 |
+
if fp16:
|
102 |
+
command += ' --mixed_precision fp16'
|
103 |
+
if use_8bit_adam:
|
104 |
+
command += ' --use_8bit_adam'
|
105 |
+
if train_text_encoder:
|
106 |
+
command += f' --train_text_encoder --learning_rate_text={learning_rate_text} --color_jitter'
|
107 |
+
|
108 |
+
with open(self.output_dir / 'train.sh', 'w') as f:
|
109 |
+
command_s = ' '.join(command.split())
|
110 |
+
f.write(command_s)
|
111 |
+
|
112 |
+
self.is_running = True
|
113 |
+
res = subprocess.run(shlex.split(command))
|
114 |
+
self.is_running = False
|
115 |
+
|
116 |
+
if res.returncode == 0:
|
117 |
+
result_message = 'Training Completed!'
|
118 |
+
else:
|
119 |
+
result_message = 'Training Failed!'
|
120 |
+
weight_paths = sorted(self.output_dir.glob('*.pt'))
|
121 |
+
return gr.update(value=result_message), weight_paths
|
uploader.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from huggingface_hub import HfApi
|
3 |
+
|
4 |
+
|
5 |
+
def upload(model_name: str, hf_token: str) -> None:
|
6 |
+
api = HfApi(token=hf_token)
|
7 |
+
user_name = api.whoami()['name']
|
8 |
+
model_id = f'{user_name}/{model_name}'
|
9 |
+
try:
|
10 |
+
api.create_repo(model_id, repo_type='model', private=True)
|
11 |
+
api.upload_folder(repo_id=model_id,
|
12 |
+
folder_path='results',
|
13 |
+
path_in_repo='results',
|
14 |
+
repo_type='model')
|
15 |
+
url = f'https://huggingface.co/{model_id}'
|
16 |
+
message = f'Your model was successfully uploaded to [{url}]({url}).'
|
17 |
+
except Exception as e:
|
18 |
+
message = str(e)
|
19 |
+
|
20 |
+
return gr.update(value=message, visible=True)
|