|
|
|
|
|
from __future__ import annotations |
|
|
|
import enum |
|
|
|
import gradio as gr |
|
from huggingface_hub import HfApi |
|
|
|
from inference import InferencePipeline |
|
from utils import find_exp_dirs |
|
|
|
SAMPLE_MODEL_IDS = [ |
|
'patrickvonplaten/lora_dreambooth_dog_example', |
|
'sayakpaul/sd-model-finetuned-lora-t4', |
|
] |
|
|
|
|
|
class ModelSource(enum.Enum): |
|
SAMPLE = 'Sample' |
|
HUB_LIB = 'Hub (lora-library)' |
|
LOCAL = 'Local' |
|
|
|
|
|
class InferenceUtil: |
|
def __init__(self, hf_token: str | None): |
|
self.hf_token = hf_token |
|
|
|
@staticmethod |
|
def load_sample_lora_model_list(): |
|
return gr.update(choices=SAMPLE_MODEL_IDS, value=SAMPLE_MODEL_IDS[0]) |
|
|
|
def load_hub_lora_model_list(self) -> dict: |
|
api = HfApi(token=self.hf_token) |
|
choices = [ |
|
info.modelId for info in api.list_models(author='lora-library') |
|
] |
|
return gr.update(choices=choices, |
|
value=choices[0] if choices else None) |
|
|
|
@staticmethod |
|
def load_local_lora_model_list() -> dict: |
|
choices = find_exp_dirs() |
|
return gr.update(choices=choices, |
|
value=choices[0] if choices else None) |
|
|
|
def reload_lora_model_list(self, model_source: str) -> dict: |
|
if model_source == ModelSource.SAMPLE.value: |
|
return self.load_sample_lora_model_list() |
|
elif model_source == ModelSource.HUB_LIB.value: |
|
return self.load_hub_lora_model_list() |
|
elif model_source == ModelSource.LOCAL.value: |
|
return self.load_local_lora_model_list() |
|
else: |
|
raise ValueError |
|
|
|
def load_model_info(self, lora_model_id: str) -> tuple[str, str]: |
|
try: |
|
card = InferencePipeline.get_model_card(lora_model_id, |
|
self.hf_token) |
|
except Exception: |
|
return '', '' |
|
base_model = getattr(card.data, 'base_model', '') |
|
instance_prompt = getattr(card.data, 'instance_prompt', '') |
|
return base_model, instance_prompt |
|
|
|
def reload_lora_model_list_and_update_model_info( |
|
self, model_source: str) -> tuple[dict, str, str]: |
|
model_list_update = self.reload_lora_model_list(model_source) |
|
model_list = model_list_update['choices'] |
|
model_info = self.load_model_info(model_list[0] if model_list else '') |
|
return model_list_update, *model_info |
|
|
|
|
|
def create_inference_demo(pipe: InferencePipeline, |
|
hf_token: str | None = None) -> gr.Blocks: |
|
app = InferenceUtil(hf_token) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(): |
|
with gr.Box(): |
|
model_source = gr.Radio( |
|
label='Model Source', |
|
choices=[_.value for _ in ModelSource], |
|
value=ModelSource.SAMPLE.value) |
|
reload_button = gr.Button('Reload Model List') |
|
lora_model_id = gr.Dropdown(label='LoRA Model ID', |
|
choices=SAMPLE_MODEL_IDS, |
|
value=SAMPLE_MODEL_IDS[0]) |
|
with gr.Accordion( |
|
label= |
|
'Model info (Base model and instance prompt used for training)', |
|
open=False): |
|
with gr.Row(): |
|
base_model_used_for_training = gr.Text( |
|
label='Base model', interactive=False) |
|
instance_prompt_used_for_training = gr.Text( |
|
label='Instance prompt', interactive=False) |
|
prompt = gr.Textbox( |
|
label='Prompt', |
|
max_lines=1, |
|
placeholder='Example: "A picture of a sks dog in a bucket"' |
|
) |
|
alpha = gr.Slider(label='LoRA alpha', |
|
minimum=0, |
|
maximum=2, |
|
step=0.05, |
|
value=1) |
|
seed = gr.Slider(label='Seed', |
|
minimum=0, |
|
maximum=100000, |
|
step=1, |
|
value=0) |
|
with gr.Accordion('Other Parameters', open=False): |
|
num_steps = gr.Slider(label='Number of Steps', |
|
minimum=0, |
|
maximum=100, |
|
step=1, |
|
value=25) |
|
guidance_scale = gr.Slider(label='CFG Scale', |
|
minimum=0, |
|
maximum=50, |
|
step=0.1, |
|
value=7.5) |
|
|
|
run_button = gr.Button('Generate') |
|
|
|
gr.Markdown(''' |
|
- After training, you can press "Reload Model List" button to load your trained model names. |
|
''') |
|
with gr.Column(): |
|
result = gr.Image(label='Result') |
|
|
|
model_source.change( |
|
fn=app.reload_lora_model_list_and_update_model_info, |
|
inputs=model_source, |
|
outputs=[ |
|
lora_model_id, |
|
base_model_used_for_training, |
|
instance_prompt_used_for_training, |
|
]) |
|
reload_button.click( |
|
fn=app.reload_lora_model_list_and_update_model_info, |
|
inputs=model_source, |
|
outputs=[ |
|
lora_model_id, |
|
base_model_used_for_training, |
|
instance_prompt_used_for_training, |
|
]) |
|
lora_model_id.change(fn=app.load_model_info, |
|
inputs=lora_model_id, |
|
outputs=[ |
|
base_model_used_for_training, |
|
instance_prompt_used_for_training, |
|
]) |
|
inputs = [ |
|
lora_model_id, |
|
prompt, |
|
alpha, |
|
seed, |
|
num_steps, |
|
guidance_scale, |
|
] |
|
prompt.submit(fn=pipe.run, inputs=inputs, outputs=result) |
|
run_button.click(fn=pipe.run, inputs=inputs, outputs=result) |
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
|
|
hf_token = os.getenv('HF_TOKEN') |
|
pipe = InferencePipeline(hf_token) |
|
demo = create_inference_demo(pipe, hf_token) |
|
demo.queue(max_size=10).launch(share=False) |
|
|