|
|
|
|
|
from __future__ import annotations |
|
|
|
import pathlib |
|
|
|
import gradio as gr |
|
import slugify |
|
|
|
from constants import UploadTarget |
|
from uploader import Uploader |
|
from utils import find_exp_dirs |
|
|
|
|
|
class LoRAModelUploader(Uploader): |
|
def upload_lora_model( |
|
self, |
|
folder_path: str, |
|
repo_name: str, |
|
upload_to: str, |
|
private: bool, |
|
delete_existing_repo: bool, |
|
) -> str: |
|
if not repo_name: |
|
repo_name = pathlib.Path(folder_path).name |
|
repo_name = slugify.slugify(repo_name) |
|
|
|
if upload_to == UploadTarget.PERSONAL_PROFILE.value: |
|
organization = '' |
|
elif upload_to == UploadTarget.LORA_LIBRARY.value: |
|
organization = 'lora-library' |
|
else: |
|
raise ValueError |
|
|
|
return self.upload(folder_path, |
|
repo_name, |
|
organization=organization, |
|
private=private, |
|
delete_existing_repo=delete_existing_repo) |
|
|
|
|
|
def load_local_lora_model_list() -> dict: |
|
choices = find_exp_dirs(ignore_repo=True) |
|
return gr.update(choices=choices, value=choices[0] if choices else None) |
|
|
|
|
|
def create_upload_demo(hf_token: str | None) -> gr.Blocks: |
|
uploader = LoRAModelUploader(hf_token) |
|
model_dirs = find_exp_dirs(ignore_repo=True) |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Box(): |
|
gr.Markdown('Local Models') |
|
reload_button = gr.Button('Reload Model List') |
|
model_dir = gr.Dropdown( |
|
label='Model names', |
|
choices=model_dirs, |
|
value=model_dirs[0] if model_dirs else None) |
|
gr.Markdown( |
|
'- Models uploaded in training time will not be shown here.') |
|
with gr.Box(): |
|
gr.Markdown('Upload Settings') |
|
with gr.Row(): |
|
use_private_repo = gr.Checkbox(label='Private', value=False) |
|
delete_existing_repo = gr.Checkbox( |
|
label='Delete existing repo of the same name', value=False) |
|
upload_to = gr.Radio(label='Upload to', |
|
choices=[_.value for _ in UploadTarget], |
|
value=UploadTarget.PERSONAL_PROFILE.value) |
|
model_name = gr.Textbox(label='Model Name') |
|
upload_button = gr.Button('Upload') |
|
gr.Markdown(''' |
|
- You can upload your trained model to your personal profile (i.e. https://huggingface.co./{your_username}/{model_name}) or to the public [LoRA Concepts Library](https://huggingface.co./lora-library) (i.e. https://huggingface.co./lora-library/{model_name}). |
|
''') |
|
with gr.Box(): |
|
gr.Markdown('Output message') |
|
output_message = gr.Markdown() |
|
|
|
reload_button.click(fn=load_local_lora_model_list, |
|
inputs=None, |
|
outputs=model_dir) |
|
upload_button.click(fn=uploader.upload_lora_model, |
|
inputs=[ |
|
model_dir, |
|
model_name, |
|
upload_to, |
|
use_private_repo, |
|
delete_existing_repo, |
|
], |
|
outputs=output_message) |
|
|
|
return demo |
|
|
|
|
|
if __name__ == '__main__': |
|
import os |
|
|
|
hf_token = os.getenv('HF_TOKEN') |
|
demo = create_upload_demo(hf_token) |
|
demo.queue(max_size=1).launch(share=False) |
|
|