import re import requests import os import random import string from requests_toolbelt.multipart.encoder import MultipartEncoder abs_path = os.path.dirname(__file__) base = "http://127.0.0.1:23456" # 映射表 def voice_speakers(): url = f"{base}/voice/speakers" res = requests.post(url=url) json = res.json() for i in json: print(i) for j in json[i]: print(j) return json # 语音合成 voice vits def voice_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "max": str(max) } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path # 语音转换 hubert-vits def voice_hubert_vits(upload_path, id, format="wav", length=1, noise=0.667, noisew=0.8): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), "id": str(id), "format": format, "length": str(length), "noise": str(noise), "noisew": str(noisew), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice/hubert-vits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path # 维度情感模型 w2v2-vits def voice_w2v2_vits(text, id=0, format="wav", lang="auto", length=1, noise=0.667, noisew=0.8, max=50, emotion=0): fields = { "text": text, "id": str(id), "format": format, "lang": lang, "length": str(length), "noise": str(noise), "noisew": str(noisew), "max": str(max), "emotion": str(emotion) } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice/w2v2-vits" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path # 语音转换 同VITS模型内角色之间的音色转换 def voice_conversion(upload_path, original_id, target_id): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), "original_id": str(original_id), "target_id": str(target_id), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice/conversion" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path def voice_ssml(ssml): fields = { "ssml": ssml, } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice/ssml" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path def voice_dimensional_emotion(upload_path): upload_name = os.path.basename(upload_path) upload_type = f'audio/{upload_name.split(".")[1]}' # wav,ogg with open(upload_path, 'rb') as upload_file: fields = { "upload": (upload_name, upload_file, upload_type), } boundary = '----VoiceConversionFormBoundary' + ''.join(random.sample(string.ascii_letters + string.digits, 16)) m = MultipartEncoder(fields=fields, boundary=boundary) headers = {"Content-Type": m.content_type} url = f"{base}/voice/dimension-emotion" res = requests.post(url=url, data=m, headers=headers) fname = re.findall("filename=(.+)", res.headers["Content-Disposition"])[0] path = f"{abs_path}/{fname}" with open(path, "wb") as f: f.write(res.content) print(path) return path import time # while 1: # text = input() # l = len(text) # time1 = time.time() # voice_vits(text) # time2 = time.time() # print(f"len:{l}耗时:{time2 - time1}") # text = "你好" # ssml = """ # # 这几天心里颇不宁静。 # 今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。 # 月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了; # 妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。 # 我悄悄地披了大衫,带上门出去。 # 沿着荷塘,是一条曲折的小煤屑路。 # 这是一条幽僻的路;白天也少人走,夜晚更加寂寞。 # 荷塘四面,长着许多树,蓊蓊郁郁的。 # 路的一旁,是些杨柳,和一些不知道名字的树。 # 没有月光的晚上,这路上阴森森的,有些怕人。 # 今晚却很好,虽然月光也还是淡淡的。 # 路上只我一个人,背着手踱着。 # 这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。 # 我爱热闹,也爱冷静;爱群居,也爱独处。 # 像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。 # 白天里一定要做的事,一定要说的话,现在都可不理。 # 这是独处的妙处,我且受用这无边的荷香月色好了。 # # """ # ssml = """ # # 这几天心里颇不宁静。今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。 # 月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了; # こんにちは # # """ # ssml = """ # # こんにちは # こんにちは # こんにちは # # """ ssml = """ 这几天心里颇不宁静。 今晚在院子里坐着乘凉,忽然想起日日走过的荷塘,在这满月的光里,总该另有一番样子吧。 月亮渐渐地升高了,墙外马路上孩子们的欢笑,已经听不见了; 妻在屋里拍着闰儿,迷迷糊糊地哼着眠歌。 我悄悄地披了大衫,带上门出去。 沿着荷塘,是一条曲折的小煤屑路。 这是一条幽僻的路;白天也少人走,夜晚更加寂寞。 荷塘四面,长着许多树,蓊蓊郁郁的。 路的一旁,是些杨柳,和一些不知道名字的树。 没有月光的晚上,这路上阴森森的,有些怕人。 今晚却很好,虽然月光也还是淡淡的。 路上只我一个人,背着手踱着。 这一片天地好像是我的;我也像超出了平常的自己,到了另一个世界里。 我爱热闹,也爱冷静;爱群居,也爱独处。 像今晚上,一个人在这苍茫的月下,什么都可以想,什么都可以不想,便觉是个自由的人。 白天里一定要做的事,一定要说的话,现在都可不理。 这是独处的妙处,我且受用这无边的荷香月色好了。 """ text = """猫咪是爱撒娇、爱玩耍的小家伙,通常有着柔软的绒毛和温柔的眼神,是许多人都喜欢的宠物哦~它们特别喜欢舔自己的毛发,用柔顺的小脑袋搓人的脚丫子,还能给人带来很多欢乐和温馨。 """ t1 = time.time() # voice_conversion("H:/git/vits-simple-api/25ecb3f6-f968-11ed-b094-e0d4e84af078.wav", 91, 93) # voice_hubert_vits("H:/git/vits-simple-api/25ecb3f6-f968-11ed-b094-e0d4e84af078.wav",0) # voice_vits(text,format="wav",lang="zh") # voice_w2v2_vits(text,emotion=111) # os.system(voice_ssml(ssml)) os.system(voice_vits(text,id=0, format="wav", max=0)) # voice_dimensional_emotion("H:/git/vits-simple-api/25ecb3f6-f968-11ed-b094-e0d4e84af078.wav") t2 = time.time() print(f"len:{len(text)}耗时:{t2 - t1}")