Spaces:
Running
Running
import librosa | |
import re | |
import numpy as np | |
import torch | |
from torch import no_grad, LongTensor, inference_mode, FloatTensor | |
import utils | |
from contants import ModelType | |
from utils import get_hparams_from_file, lang_dict | |
from utils.sentence import sentence_split_and_markup | |
from vits import commons | |
from vits.mel_processing import spectrogram_torch | |
from vits.text import text_to_sequence | |
from vits.models import SynthesizerTrn | |
class VITS: | |
def __init__(self, model, config, additional_model=None, model_type=None, device=torch.device("cpu"), **kwargs): | |
self.model_type = model_type | |
self.hps_ms = get_hparams_from_file(config) if isinstance(config, str) else config | |
self.n_speakers = getattr(self.hps_ms.data, 'n_speakers', 0) | |
self.n_symbols = len(getattr(self.hps_ms, 'symbols', [])) | |
self.speakers = getattr(self.hps_ms, 'speakers', ['0']) | |
if not isinstance(self.speakers, list): | |
self.speakers = [item[0] for item in sorted(list(self.speakers.items()), key=lambda x: x[1])] | |
self.use_f0 = getattr(self.hps_ms.data, 'use_f0', False) | |
self.emotion_embedding = getattr(self.hps_ms.data, 'emotion_embedding', | |
getattr(self.hps_ms.model, 'emotion_embedding', False)) | |
self.bert_embedding = getattr(self.hps_ms.data, 'bert_embedding', | |
getattr(self.hps_ms.model, 'bert_embedding', False)) | |
self.hps_ms.model.emotion_embedding = self.emotion_embedding | |
self.hps_ms.model.bert_embedding = self.bert_embedding | |
self.net_g_ms = SynthesizerTrn( | |
self.n_symbols, | |
self.hps_ms.data.filter_length // 2 + 1, | |
self.hps_ms.train.segment_size // self.hps_ms.data.hop_length, | |
n_speakers=self.n_speakers, | |
**self.hps_ms.model) | |
_ = self.net_g_ms.eval() | |
self.device = device | |
key = getattr(self.hps_ms.data, "text_cleaners", ["none"])[0] | |
self.lang = lang_dict.get(key, ["unknown"]) | |
# load model | |
self.load_model(model, additional_model) | |
def load_model(self, model, additional_model=None): | |
utils.load_checkpoint(model, self.net_g_ms) | |
self.net_g_ms.to(self.device) | |
if self.model_type == ModelType.HUBERT_VITS: | |
self.hubert = additional_model | |
elif self.model_type == ModelType.W2V2_VITS: | |
self.emotion_reference = additional_model | |
def get_cleaned_text(self, text, hps, cleaned=False): | |
if cleaned: | |
text_norm = text_to_sequence(text, hps.symbols, []) | |
else: | |
if self.bert_embedding: | |
text_norm, char_embed = text_to_sequence(text, hps.symbols, hps.data.text_cleaners, | |
bert_embedding=self.bert_embedding) | |
text_norm = LongTensor(text_norm) | |
return text_norm, char_embed | |
else: | |
text_norm = text_to_sequence(text, hps.symbols, hps.data.text_cleaners) | |
if hps.data.add_blank: | |
text_norm = commons.intersperse(text_norm, 0) | |
text_norm = LongTensor(text_norm) | |
return text_norm | |
def get_cleaner(self): | |
return getattr(self.hps_ms.data, 'text_cleaners', [None])[0] | |
def get_speakers(self, escape=False): | |
return self.speakers | |
def sampling_rate(self): | |
return self.hps_ms.data.sampling_rate | |
def infer(self, params): | |
with no_grad(): | |
x_tst = params.get("stn_tst").unsqueeze(0).to(self.device) | |
x_tst_lengths = LongTensor([params.get("stn_tst").size(0)]).to(self.device) | |
x_tst_prosody = torch.FloatTensor(params.get("char_embeds")).unsqueeze(0).to( | |
self.device) if self.bert_embedding else None | |
sid = params.get("sid").to(self.device) | |
emotion = params.get("emotion").to(self.device) if self.emotion_embedding else None | |
audio = self.net_g_ms.infer(x=x_tst, | |
x_lengths=x_tst_lengths, | |
sid=sid, | |
noise_scale=params.get("noise_scale"), | |
noise_scale_w=params.get("noise_scale_w"), | |
length_scale=params.get("length_scale"), | |
emotion_embedding=emotion, | |
bert=x_tst_prosody)[0][0, 0].data.float().cpu().numpy() | |
torch.cuda.empty_cache() | |
return audio | |
def get_infer_param(self, length_scale, noise_scale, noise_scale_w, text=None, speaker_id=None, audio_path=None, | |
emotion=None, cleaned=False, f0_scale=1): | |
emo = None | |
char_embeds = None | |
if self.model_type != ModelType.HUBERT_VITS: | |
if self.bert_embedding: | |
stn_tst, char_embeds = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
else: | |
stn_tst = self.get_cleaned_text(text, self.hps_ms, cleaned=cleaned) | |
sid = LongTensor([speaker_id]) | |
if self.model_type == ModelType.W2V2_VITS: | |
# if emotion_reference.endswith('.npy'): | |
# emotion = np.load(emotion_reference) | |
# emotion = FloatTensor(emotion).unsqueeze(0) | |
# else: | |
# audio16000, sampling_rate = librosa.load( | |
# emotion_reference, sr=16000, mono=True) | |
# emotion = self.w2v2(audio16000, sampling_rate)[ | |
# 'hidden_states'] | |
# emotion_reference = re.sub( | |
# r'\..*$', '', emotion_reference) | |
# np.save(emotion_reference, emotion.squeeze(0)) | |
# emotion = FloatTensor(emotion) | |
emo = torch.FloatTensor(self.emotion_reference[emotion]).unsqueeze(0) | |
elif self.model_type == ModelType.HUBERT_VITS: | |
if self.use_f0: | |
audio, sampling_rate = librosa.load(audio_path, sr=self.hps_ms.data.sampling_rate, mono=True) | |
audio16000 = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000) | |
else: | |
audio16000, sampling_rate = librosa.load(audio_path, sr=16000, mono=True) | |
with inference_mode(): | |
units = self.hubert.units(FloatTensor(audio16000).unsqueeze(0).unsqueeze(0)).squeeze(0).numpy() | |
if self.use_f0: | |
f0 = librosa.pyin(audio, | |
sr=sampling_rate, | |
fmin=librosa.note_to_hz('C0'), | |
fmax=librosa.note_to_hz('C7'), | |
frame_length=1780)[0] | |
target_length = len(units[:, 0]) | |
f0 = np.nan_to_num(np.interp(np.arange(0, len(f0) * target_length, len(f0)) / target_length, | |
np.arange(0, len(f0)), f0)) * f0_scale | |
units[:, 0] = f0 / 10 | |
stn_tst = FloatTensor(units) | |
sid = LongTensor([speaker_id]) | |
params = {"length_scale": length_scale, "noise_scale": noise_scale, | |
"noise_scale_w": noise_scale_w, "stn_tst": stn_tst, | |
"sid": sid, "emotion": emo, "char_embeds": char_embeds} | |
return params | |
def get_tasks(self, voice): | |
text = voice.get("text", None) | |
speaker_id = voice.get("id", 0) | |
length = voice.get("length", 1) | |
noise = voice.get("noise", 0.667) | |
noisew = voice.get("noisew", 0.8) | |
max = voice.get("max", 50) | |
lang = voice.get("lang", "auto") | |
speaker_lang = voice.get("speaker_lang", None) | |
audio_path = voice.get("audio_path", None) | |
emotion = voice.get("emotion", 0) | |
# 去除所有多余的空白字符 | |
if text is not None: text = re.sub(r'\s+', ' ', text).strip() | |
tasks = [] | |
if self.model_type == ModelType.VITS: | |
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang) | |
for sentence in sentence_list: | |
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length, | |
noise_scale=noise, noise_scale_w=noisew) | |
tasks.append(params) | |
elif self.model_type == ModelType.HUBERT_VITS: | |
params = self.get_infer_param(speaker_id=speaker_id, length_scale=length, noise_scale=noise, | |
noise_scale_w=noisew, audio_path=audio_path) | |
tasks.append(params) | |
elif self.model_type == ModelType.W2V2_VITS: | |
sentence_list = sentence_split_and_markup(text, max, lang, speaker_lang) | |
for sentence in sentence_list: | |
params = self.get_infer_param(text=sentence, speaker_id=speaker_id, length_scale=length, | |
noise_scale=noise, noise_scale_w=noisew, emotion=emotion) | |
tasks.append(params) | |
else: | |
raise ValueError(f"Unsupported model type: {self.model_type}") | |
return tasks | |
def get_audio(self, voice, auto_break=False): | |
tasks = self.get_tasks(voice) | |
# 停顿0.75s,避免语音分段合成再拼接后的连接突兀 | |
brk = np.zeros(int(0.75 * self.sampling_rate), dtype=np.int16) | |
audios = [] | |
num_tasks = len(tasks) | |
for i, task in enumerate(tasks): | |
if auto_break and i < num_tasks - 1: | |
chunk = np.concatenate((self.infer(task), brk), axis=0) | |
else: | |
chunk = self.infer(task) | |
audios.append(chunk) | |
audio = np.concatenate(audios, axis=0) | |
return audio | |
def get_stream_audio(self, voice, auto_break=False): | |
tasks = self.get_tasks(voice) | |
brk = np.zeros(int(0.75 * 22050), dtype=np.int16) | |
for task in tasks: | |
if auto_break: | |
chunk = np.concatenate((self.infer(task), brk), axis=0) | |
else: | |
chunk = self.infer(task) | |
yield chunk | |
def voice_conversion(self, voice): | |
audio_path = voice.get("audio_path") | |
original_id = voice.get("original_id") | |
target_id = voice.get("target_id") | |
audio = utils.load_audio_to_torch( | |
audio_path, self.hps_ms.data.sampling_rate) | |
y = audio.unsqueeze(0) | |
spec = spectrogram_torch(y, self.hps_ms.data.filter_length, | |
self.hps_ms.data.sampling_rate, self.hps_ms.data.hop_length, | |
self.hps_ms.data.win_length, | |
center=False) | |
spec_lengths = LongTensor([spec.size(-1)]) | |
sid_src = LongTensor([original_id]) | |
with no_grad(): | |
sid_tgt = LongTensor([target_id]) | |
audio = self.net_g_ms.voice_conversion(spec.to(self.device), | |
spec_lengths.to(self.device), | |
sid_src=sid_src.to(self.device), | |
sid_tgt=sid_tgt.to(self.device))[0][0, 0].data.cpu().float().numpy() | |
torch.cuda.empty_cache() | |
return audio | |