Spaces:
Running
Running
File size: 14,716 Bytes
c5ed230 5854014 c5ed230 d94ccbe b0f5083 c5ed230 dc13618 c5ed230 14e19a5 c5ed230 b0f5083 14e19a5 b0f5083 c5ed230 5854014 d94ccbe 5854014 14e19a5 5854014 c5ed230 b0f5083 14e19a5 b0f5083 dc13618 c5ed230 dc13618 c5ed230 dc13618 c5ed230 5854014 c5ed230 5854014 c5ed230 5854014 c5ed230 5854014 c5ed230 5854014 c5ed230 b5830b6 b0f5083 c5ed230 b0f5083 c5ed230 b0f5083 c5ed230 b0f5083 c5ed230 b0f5083 c5ed230 b0f5083 14e19a5 b0f5083 c5ed230 b0f5083 14e19a5 5854014 b0f5083 d94ccbe c5ed230 14e19a5 b0f5083 14e19a5 b0f5083 14e19a5 b5830b6 c5ed230 14e19a5 b0f5083 14e19a5 b5830b6 14e19a5 b0f5083 14e19a5 b5830b6 c5ed230 14e19a5 b0f5083 14e19a5 b5830b6 c5ed230 14e19a5 c5ed230 b0f5083 c5ed230 b0f5083 c5ed230 b0f5083 c5ed230 14e19a5 b5830b6 c5ed230 dc13618 14e19a5 b0f5083 14e19a5 dc13618 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
import os
import librosa
import re
import numpy as np
import torch
import xml.etree.ElementTree as ET
import config
import soundfile as sf
from io import BytesIO
from graiax import silkcoder
from logger import logger
from contants import ModelType
from scipy.signal import resample_poly
# torch.set_num_threads(1) # 设置torch线程为1
class TTS:
def __init__(self, voice_obj, voice_speakers, **kwargs):
self._voice_obj = voice_obj
self._voice_speakers = voice_speakers
self._strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
self._speakers_count = sum([len(self._voice_speakers[i]) for i in self._voice_speakers])
self._vits_speakers_count = len(self._voice_speakers[ModelType.VITS.value])
self._hubert_speakers_count = len(self._voice_speakers[ModelType.HUBERT_VITS.value])
self._w2v2_speakers_count = len(self._voice_speakers[ModelType.W2V2_VITS.value])
self._w2v2_emotion_count = kwargs.get("w2v2_emotion_count", 0)
self._bert_vits2_speakers_count = len(self._voice_speakers[ModelType.BERT_VITS2.value])
self.dem = None
# Initialization information
self.logger = logger
self.logger.info(f"torch:{torch.__version__} cuda_available:{torch.cuda.is_available()}")
self.logger.info(f'device:{kwargs.get("device")} device.type:{kwargs.get("device").type}')
if getattr(config, "DIMENSIONAL_EMOTION_MODEL", None) != None:
try:
import audonnx
root = os.path.dirname(config.DIMENSIONAL_EMOTION_MODEL)
model_file = config.DIMENSIONAL_EMOTION_MODEL
self.dem = audonnx.load(root=root, model_file=model_file)
except Exception as e:
self.logger.warning(f"Load DIMENSIONAL_EMOTION_MODEL failed {e}")
if self._vits_speakers_count != 0: self.logger.info(f"[{ModelType.VITS.value}] {self._vits_speakers_count} speakers")
if self._hubert_speakers_count != 0: self.logger.info(f"[{ModelType.HUBERT_VITS.value}] {self._hubert_speakers_count} speakers")
if self._w2v2_speakers_count != 0: self.logger.info(f"[{ModelType.W2V2_VITS.value}] {self._w2v2_speakers_count} speakers")
if self._bert_vits2_speakers_count != 0: self.logger.info(
f"[{ModelType.BERT_VITS2.value}] {self._bert_vits2_speakers_count} speakers")
self.logger.info(f"{self._speakers_count} speakers in total.")
if self._speakers_count == 0:
self.logger.warning(f"No model was loaded.")
@property
def voice_speakers(self):
return self._voice_speakers
@property
def speakers_count(self):
return self._speakers_count
@property
def vits_speakers_count(self):
return self._vits_speakers_count
@property
def hubert_speakers_count(self):
return self._hubert_speakers_count
@property
def w2v2_speakers_count(self):
return self._w2v2_speakers_count
@property
def w2v2_emotion_count(self):
return self._w2v2_emotion_count
@property
def bert_vits2_speakers_count(self):
return self._bert_vits2_speakers_count
def encode(self, sampling_rate, audio, format):
with BytesIO() as f:
if format.upper() == 'OGG':
sf.write(f, audio, sampling_rate, format="ogg")
return BytesIO(f.getvalue())
elif format.upper() == 'SILK':
sf.write(f, audio, sampling_rate, format="wav")
return BytesIO(silkcoder.encode(f))
elif format.upper() == 'MP3':
sf.write(f, audio, sampling_rate, format="mp3")
return BytesIO(f.getvalue())
elif format.upper() == 'WAV':
sf.write(f, audio, sampling_rate, format="wav")
return BytesIO(f.getvalue())
elif format.upper() == 'FLAC':
sf.write(f, audio, sampling_rate, format="flac")
return BytesIO(f.getvalue())
else:
raise ValueError(f"Unsupported format:{format}")
def convert_time_string(self, time_string):
time_value = float(re.findall(r'\d+\.?\d*', time_string)[0])
time_unit = re.findall(r'[a-zA-Z]+', time_string)[0].lower()
if time_unit.upper() == 'MS':
return time_value / 1000
elif time_unit.upper() == 'S':
return time_value
elif time_unit.upper() == 'MIN':
return time_value * 60
elif time_unit.upper() == 'H':
return time_value * 3600
elif time_unit.upper() == 'D':
return time_value * 24 * 3600 # 不会有人真写D吧?
else:
raise ValueError("Unsupported time unit: {}".format(time_unit))
def generate_audio_chunks(self, audio):
chunk_size = 4096
while True:
chunk = audio.read(chunk_size)
if not chunk:
break
yield chunk
def resample_audio(self, audio, orig_sr, target_sr):
if orig_sr == target_sr:
return audio
gcd = np.gcd(orig_sr, target_sr)
audio = resample_poly(audio, target_sr // gcd, orig_sr // gcd)
return audio
def parse_ssml(self, ssml):
root = ET.fromstring(ssml)
format = root.attrib.get("format", "wav")
voice_tasks = []
brk_count = 0
strength_dict = {"x-weak": 0.25, "weak": 0.5, "Medium": 0.75, "Strong": 1, "x-strong": 1.25}
for element in root.iter():
if element.tag == "voice":
id = int(element.attrib.get("id", root.attrib.get("id", config.ID)))
lang = element.attrib.get("lang", root.attrib.get("lang", config.LANG))
length = float(element.attrib.get("length", root.attrib.get("length", config.LENGTH)))
noise = float(element.attrib.get("noise", root.attrib.get("noise", config.NOISE)))
noisew = float(element.attrib.get("noisew", root.attrib.get("noisew", config.NOISEW)))
max = int(element.attrib.get("max", root.attrib.get("max", "0")))
# 不填写默认就是vits
model_type = element.attrib.get("model_type", root.attrib.get("model_type", "vits"))
# w2v2-vits/emotion-vits才有emotion
emotion = int(element.attrib.get("emotion", root.attrib.get("emotion", 0)))
# Bert-VITS2的参数
sdp_ratio = int(element.attrib.get("sdp_ratio", root.attrib.get("sdp_ratio", config.SDP_RATIO)))
voice_element = ET.tostring(element, encoding='unicode')
pattern_voice = r'<voice.*?>(.*?)</voice>'
pattern_break = r'<break\s*?(.*?)\s*?/>'
matches_voice = re.findall(pattern_voice, voice_element)[0]
matches_break = re.split(pattern_break, matches_voice)
for match in matches_break:
strength = re.search(r'\s*strength\s*=\s*[\'\"](.*?)[\'\"]', match)
time = re.search(r'\s*time\s*=\s*[\'\"](.*?)[\'\"]', match)
# break标签 strength属性
if strength:
brk = strength_dict[strength.group(1)]
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 time属性
elif time:
brk = self.convert_time_string(time.group(1))
voice_tasks.append({"break": brk})
brk_count += 1
# break标签 为空说明只写了break,默认停顿0.75s
elif match == "":
voice_tasks.append({"break": 0.75})
brk_count += 1
# voice标签中除了break剩下的就是文本
else:
voice_tasks.append({"id": id,
"text": match,
"lang": lang,
"length": length,
"noise": noise,
"noisew": noisew,
"max": max,
"model_type": model_type,
"emotion": emotion,
"sdp_ratio": sdp_ratio
})
# 分段末尾停顿0.75s
voice_tasks.append({"break": 0.75})
elif element.tag == "break":
# brk_count大于0说明voice标签中有break
if brk_count > 0:
brk_count -= 1
continue
brk = strength_dict.get(element.attrib.get("strength"),
self.convert_time_string(element.attrib.get("time", "750ms")))
voice_tasks.append({"break": brk})
for i in voice_tasks:
self.logger.debug(i)
return voice_tasks, format
def process_ssml_infer_task(self, tasks, format):
audios = []
sampling_rates = []
last_sampling_rate = 22050
for task in tasks:
if task.get("break"):
audios.append(np.zeros(int(task.get("break") * 22050), dtype=np.int16))
sampling_rates.append(last_sampling_rate)
else:
model_type_str = task.get("model_type").upper()
if model_type_str not in [ModelType.VITS.value, ModelType.W2V2_VITS.value, ModelType.BERT_VITS2.value]:
raise ValueError(f"Unsupported model type: {task.get('model_type')}")
model_type = ModelType(model_type_str)
voice_obj = self._voice_obj[model_type][task.get("id")][1]
real_id = self._voice_obj[model_type][task.get("id")][0]
task["id"] = real_id
sampling_rates.append(voice_obj.sampling_rate)
last_sampling_rate = voice_obj.sampling_rate
audio = voice_obj.get_audio(task)
audios.append(audio)
# 得到最高的采样率
target_sr = max(sampling_rates)
# 所有音频要与最高采样率保持一致
resampled_audios = [self.resample_audio(audio, sr, target_sr) for audio, sr in zip(audios, sampling_rates)]
audio = np.concatenate(resampled_audios, axis=0)
encoded_audio = self.encode(target_sr, audio, format)
return encoded_audio
def vits_infer(self, task):
format = task.get("format", "wav")
voice_obj = self._voice_obj[ModelType.VITS][task.get("id")][1]
real_id = self._voice_obj[ModelType.VITS][task.get("id")][0]
task["id"] = real_id # Change to real id
sampling_rate = voice_obj.sampling_rate
audio = voice_obj.get_audio(task, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
return encoded_audio
def stream_vits_infer(self, task, fname=None):
format = task.get("format", "wav")
voice_obj = self._voice_obj[ModelType.VITS][task.get("id")][1]
task["id"] = self._voice_obj[ModelType.VITS][task.get("id")][0]
sampling_rate = voice_obj.sampling_rate
genertator = voice_obj.get_stream_audio(task, auto_break=True)
# audio = BytesIO()
for chunk in genertator:
encoded_audio = self.encode(sampling_rate, chunk, format)
for encoded_audio_chunk in self.generate_audio_chunks(encoded_audio):
yield encoded_audio_chunk
# if getattr(config, "SAVE_AUDIO", False):
# audio.write(encoded_audio.getvalue())
# if getattr(config, "SAVE_AUDIO", False):
# path = f"{config.CACHE_PATH}/{fname}"
# utils.save_audio(audio.getvalue(), path)
def hubert_vits_infer(self, task):
format = task.get("format", "wav")
voice_obj = self._voice_obj[ModelType.HUBERT_VITS][task.get("id")][1]
task["id"] = self._voice_obj[ModelType.HUBERT_VITS][task.get("id")][0]
sampling_rate = voice_obj.sampling_rate
audio = voice_obj.get_audio(task)
encoded_audio = self.encode(sampling_rate, audio, format)
return encoded_audio
def w2v2_vits_infer(self, task):
format = task.get("format", "wav")
voice_obj = self._voice_obj[ModelType.W2V2_VITS][task.get("id")][1]
task["id"] = self._voice_obj[ModelType.W2V2_VITS][task.get("id")][0]
sampling_rate = voice_obj.sampling_rate
audio = voice_obj.get_audio(task, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
return encoded_audio
def vits_voice_conversion(self, task):
original_id = task.get("original_id")
target_id = task.get("target_id")
format = task.get("format")
original_id_obj = int(self._voice_obj[ModelType.VITS][original_id][2])
target_id_obj = int(self._voice_obj[ModelType.VITS][target_id][2])
if original_id_obj != target_id_obj:
raise ValueError(f"speakers are in diffrent VITS Model")
task["original_id"] = int(self._voice_obj[ModelType.VITS][original_id][0])
task["target_id"] = int(self._voice_obj[ModelType.VITS][target_id][0])
voice_obj = self._voice_obj[ModelType.VITS][original_id][1]
sampling_rate = voice_obj.sampling_rate
audio = voice_obj.voice_conversion(task)
encoded_audio = self.encode(sampling_rate, audio, format)
return encoded_audio
def get_dimensional_emotion_npy(self, audio):
if self.dem is None:
raise ValueError(f"Please configure DIMENSIONAL_EMOTION_MODEL path in config.py")
audio16000, sampling_rate = librosa.load(audio, sr=16000, mono=True)
emotion = self.dem(audio16000, sampling_rate)['hidden_states']
emotion_npy = BytesIO()
np.save(emotion_npy, emotion.squeeze(0))
emotion_npy.seek(0)
return emotion_npy
def bert_vits2_infer(self, task):
format = task.get("format", "wav")
voice_obj = self._voice_obj[ModelType.BERT_VITS2][task.get("id")][1]
task["id"] = self._voice_obj[ModelType.BERT_VITS2][task.get("id")][0]
sampling_rate = voice_obj.sampling_rate
audio = voice_obj.get_audio(task, auto_break=True)
encoded_audio = self.encode(sampling_rate, audio, format)
return encoded_audio
|