lnyan's picture
Add files
5704551
raw
history blame
9.73 kB
#include <algorithm>
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include "inpaint.h"
namespace {
static std::vector<double> kDistance2Similarity;
void init_kDistance2Similarity() {
double base[11] = {1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0};
int length = (PatchDistanceMetric::kDistanceScale + 1);
kDistance2Similarity.resize(length);
for (int i = 0; i < length; ++i) {
double t = (double) i / length;
int j = (int) (100 * t);
int k = j + 1;
double vj = (j < 11) ? base[j] : 0;
double vk = (k < 11) ? base[k] : 0;
kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj);
}
}
inline void _weighted_copy(const MaskedImage &source, int ys, int xs, cv::Mat &target, int yt, int xt, double weight) {
if (source.is_masked(ys, xs)) return;
if (source.is_globally_masked(ys, xs)) return;
auto source_ptr = source.get_image(ys, xs);
auto target_ptr = target.ptr<double>(yt, xt);
#pragma unroll
for (int c = 0; c < 3; ++c)
target_ptr[c] += static_cast<double>(source_ptr[c]) * weight;
target_ptr[3] += weight;
}
}
/**
* This algorithme uses a version proposed by Xavier Philippeau.
*/
Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric)
: m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
_initialize_pyramid();
}
Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric)
: m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
_initialize_pyramid();
}
void Inpainting::_initialize_pyramid() {
auto source = m_initial;
m_pyramid.push_back(source);
while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) {
source = source.downsample();
m_pyramid.push_back(source);
}
if (kDistance2Similarity.size() == 0) {
init_kDistance2Similarity();
}
}
cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) {
srand(random_seed);
const int nr_levels = m_pyramid.size();
MaskedImage source, target;
for (int level = nr_levels - 1; level >= 0; --level) {
if (verbose) std::cerr << "Inpainting level: " << level << std::endl;
source = m_pyramid[level];
if (level == nr_levels - 1) {
target = source.clone();
target.clear_mask();
m_source2target = NearestNeighborField(source, target, m_distance_metric);
m_target2source = NearestNeighborField(target, source, m_distance_metric);
} else {
m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target);
m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source);
}
if (verbose) std::cerr << "Initialization done." << std::endl;
if (verbose_visualize) {
auto visualize_size = m_initial.size();
cv::Mat source_visualize(visualize_size, m_initial.image().type());
cv::resize(source.image(), source_visualize, visualize_size);
cv::imshow("Source", source_visualize);
cv::Mat target_visualize(visualize_size, m_initial.image().type());
cv::resize(target.image(), target_visualize, visualize_size);
cv::imshow("Target", target_visualize);
cv::waitKey(0);
}
target = _expectation_maximization(source, target, level, verbose);
}
return target.image();
}
// EM-Like algorithm (see "PatchMatch" - page 6).
// Returns a double sized target image (unless level = 0).
MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose) {
const int nr_iters_em = 1 + 2 * level;
const int nr_iters_nnf = static_cast<int>(std::min(7, 1 + level));
const int patch_size = m_distance_metric->patch_size();
MaskedImage new_source, new_target;
for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) {
if (iter_em != 0) {
m_source2target.set_target(new_target);
m_target2source.set_source(new_target);
target = new_target;
}
if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl;
auto size = source.size();
for (int i = 0; i < size.height; ++i) {
for (int j = 0; j < size.width; ++j) {
if (!source.contains_mask(i, j, patch_size)) {
m_source2target.set_identity(i, j);
m_target2source.set_identity(i, j);
}
}
}
if (verbose) std::cerr << " NNF minimization started." << std::endl;
m_source2target.minimize(nr_iters_nnf);
m_target2source.minimize(nr_iters_nnf);
if (verbose) std::cerr << " NNF minimization finished." << std::endl;
// Instead of upsizing the final target, we build the last target from the next level source image.
// Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5).
bool upscaled = false;
if (level >= 1 && iter_em == nr_iters_em - 1) {
new_source = m_pyramid[level - 1];
new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask());
upscaled = true;
} else {
new_source = m_pyramid[level];
new_target = target.clone();
}
auto vote = cv::Mat(new_target.size(), CV_64FC4);
vote.setTo(cv::Scalar::all(0));
// Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence).
_expectation_step(m_source2target, 1, vote, new_source, upscaled);
if (verbose) std::cerr << " Expectation source to target finished." << std::endl;
_expectation_step(m_target2source, 0, vote, new_source, upscaled);
if (verbose) std::cerr << " Expectation target to source finished." << std::endl;
// Compile votes and update pixel values.
_maximization_step(new_target, vote);
if (verbose) std::cerr << " Minimization step finished." << std::endl;
}
return new_target;
}
// Expectation step: vote for best estimations of each pixel.
void Inpainting::_expectation_step(
const NearestNeighborField &nnf, bool source2target,
cv::Mat &vote, const MaskedImage &source, bool upscaled
) {
auto source_size = nnf.source_size();
auto target_size = nnf.target_size();
const int patch_size = m_distance_metric->patch_size();
for (int i = 0; i < source_size.height; ++i) {
for (int j = 0; j < source_size.width; ++j) {
if (nnf.source().is_globally_masked(i, j)) continue;
int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2);
double w = kDistance2Similarity[dp];
for (int di = -patch_size; di <= patch_size; ++di) {
for (int dj = -patch_size; dj <= patch_size; ++dj) {
int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj;
if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue;
if (nnf.source().is_globally_masked(ys, xs)) continue;
if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue;
if (nnf.target().is_globally_masked(yt, xt)) continue;
if (!source2target) {
std::swap(ys, yt);
std::swap(xs, xt);
}
if (upscaled) {
for (int uy = 0; uy < 2; ++uy) {
for (int ux = 0; ux < 2; ++ux) {
_weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w);
}
}
} else {
_weighted_copy(source, ys, xs, vote, yt, xt, w);
}
}
}
}
}
}
// Maximization Step: maximum likelihood of target pixel.
void Inpainting::_maximization_step(MaskedImage &target, const cv::Mat &vote) {
auto target_size = target.size();
for (int i = 0; i < target_size.height; ++i) {
for (int j = 0; j < target_size.width; ++j) {
const double *source_ptr = vote.ptr<double>(i, j);
unsigned char *target_ptr = target.get_mutable_image(i, j);
if (target.is_globally_masked(i, j)) {
continue;
}
if (source_ptr[3] > 0) {
unsigned char r = cv::saturate_cast<unsigned char>(source_ptr[0] / source_ptr[3]);
unsigned char g = cv::saturate_cast<unsigned char>(source_ptr[1] / source_ptr[3]);
unsigned char b = cv::saturate_cast<unsigned char>(source_ptr[2] / source_ptr[3]);
target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
} else {
target.set_mask(i, j, 0);
}
}
}
}