File size: 6,985 Bytes
f5c3a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9b1627
 
f5c3a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
from PIL import Image
from PIL import ImageFilter
import cv2
import numpy as np
import scipy
import scipy.signal
from scipy.spatial import cKDTree

import os
from perlin2d import *

patch_match_compiled = True

try:
    from PyPatchMatch import patch_match
except Exception as e:
    try:
        import patch_match
    except Exception as e:
        patch_match_compiled = False

try:
    patch_match
except NameError:
    print("patch_match compiling failed, will fall back to edge_pad")
    patch_match_compiled = False




def edge_pad(img, mask, mode=1):
    if mode == 0:
        nmask = mask.copy()
        nmask[nmask > 0] = 1
        res0 = 1 - nmask
        res1 = nmask
        p0 = np.stack(res0.nonzero(), axis=0).transpose()
        p1 = np.stack(res1.nonzero(), axis=0).transpose()
        min_dists, min_dist_idx = cKDTree(p1).query(p0, 1)
        loc = p1[min_dist_idx]
        for (a, b), (c, d) in zip(p0, loc):
            img[a, b] = img[c, d]
    elif mode == 1:
        record = {}
        kernel = [[1] * 3 for _ in range(3)]
        nmask = mask.copy()
        nmask[nmask > 0] = 1
        res = scipy.signal.convolve2d(
            nmask, kernel, mode="same", boundary="fill", fillvalue=1
        )
        res[nmask < 1] = 0
        res[res == 9] = 0
        res[res > 0] = 1
        ylst, xlst = res.nonzero()
        queue = [(y, x) for y, x in zip(ylst, xlst)]
        # bfs here
        cnt = res.astype(np.float32)
        acc = img.astype(np.float32)
        step = 1
        h = acc.shape[0]
        w = acc.shape[1]
        offset = [(1, 0), (-1, 0), (0, 1), (0, -1)]
        while queue:
            target = []
            for y, x in queue:
                val = acc[y][x]
                for yo, xo in offset:
                    yn = y + yo
                    xn = x + xo
                    if 0 <= yn < h and 0 <= xn < w and nmask[yn][xn] < 1:
                        if record.get((yn, xn), step) == step:
                            acc[yn][xn] = acc[yn][xn] * cnt[yn][xn] + val
                            cnt[yn][xn] += 1
                            acc[yn][xn] /= cnt[yn][xn]
                            if (yn, xn) not in record:
                                record[(yn, xn)] = step
                                target.append((yn, xn))
            step += 1
            queue = target
        img = acc.astype(np.uint8)
    else:
        nmask = mask.copy()
        ylst, xlst = nmask.nonzero()
        yt, xt = ylst.min(), xlst.min()
        yb, xb = ylst.max(), xlst.max()
        content = img[yt : yb + 1, xt : xb + 1]
        img = np.pad(
            content,
            ((yt, mask.shape[0] - yb - 1), (xt, mask.shape[1] - xb - 1), (0, 0)),
            mode="edge",
        )
    return img, mask


def perlin_noise(img, mask):
    lin = np.linspace(0, 5, mask.shape[0], endpoint=False)
    x, y = np.meshgrid(lin, lin)
    avg = img.mean(axis=0).mean(axis=0)
    # noise=[((perlin(x, y)+1)*128+avg[i]).astype(np.uint8) for i in range(3)]
    noise = [((perlin(x, y) + 1) * 0.5 * 255).astype(np.uint8) for i in range(3)]
    noise = np.stack(noise, axis=-1)
    # mask=skimage.measure.block_reduce(mask,(8,8),np.min)
    # mask=mask.repeat(8, axis=0).repeat(8, axis=1)
    # mask_image=Image.fromarray(mask)
    # mask_image=mask_image.filter(ImageFilter.GaussianBlur(radius = 4))
    # mask=np.array(mask_image)
    nmask = mask.copy()
    # nmask=nmask/255.0
    nmask[mask > 0] = 1
    img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
    # img=img.astype(np.uint8)
    return img, mask


def gaussian_noise(img, mask):
    noise = np.random.randn(mask.shape[0], mask.shape[1], 3)
    noise = (noise + 1) / 2 * 255
    noise = noise.astype(np.uint8)
    nmask = mask.copy()
    nmask[mask > 0] = 1
    img = nmask[:, :, np.newaxis] * img + (1 - nmask[:, :, np.newaxis]) * noise
    return img, mask


def cv2_telea(img, mask):
    ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_TELEA)
    return ret, mask


def cv2_ns(img, mask):
    ret = cv2.inpaint(img, 255 - mask, 5, cv2.INPAINT_NS)
    return ret, mask


def patch_match_func(img, mask):
    ret = patch_match.inpaint(img, mask=255 - mask, patch_size=3)
    return ret, mask


def mean_fill(img, mask):
    avg = img.mean(axis=0).mean(axis=0)
    img[mask < 1] = avg
    return img, mask

def g_diffuser(img,mask):
    return img, mask

def dummy_fill(img,mask):
    return img,mask
functbl = {
    "gaussian": gaussian_noise,
    "perlin": perlin_noise,
    "edge_pad": edge_pad,
    "patchmatch": patch_match_func if patch_match_compiled else edge_pad,
    "cv2_ns": cv2_ns,
    "cv2_telea": cv2_telea,
    "g_diffuser": g_diffuser,
    "g_diffuser_lib": dummy_fill,
}

try:
    from postprocess import PhotometricCorrection
    correction_func = PhotometricCorrection()
except Exception as e:
    print(e, "so PhotometricCorrection is disabled")
    class DummyCorrection:
        def __init__(self):
            self.backend=""
            pass
        def run(self,a,b,**kwargs):
            return b
    correction_func=DummyCorrection()

if "taichi" in correction_func.backend:
    import sys
    import io
    import base64
    from PIL import Image
    def base64_to_pil(base64_str):
        data = base64.b64decode(str(base64_str))
        pil = Image.open(io.BytesIO(data))
        return pil

    def pil_to_base64(out_pil):
        out_buffer = io.BytesIO()
        out_pil.save(out_buffer, format="PNG")
        out_buffer.seek(0)
        base64_bytes = base64.b64encode(out_buffer.read())
        base64_str = base64_bytes.decode("ascii")
        return base64_str
    from subprocess import Popen, PIPE, STDOUT
    class SubprocessCorrection:
        def __init__(self):
            self.backend=correction_func.backend
            self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
        def run(self,img_input,img_inpainted,mode):
            if mode=="disabled":
                return img_inpainted
            base64_str_input = pil_to_base64(img_input)
            base64_str_inpainted = pil_to_base64(img_inpainted)
            try:
                if self.child.poll():
                    self.child= Popen(["python", "postprocess.py"], stdin=PIPE, stdout=PIPE, stderr=STDOUT)
                self.child.stdin.write(f"{base64_str_input},{base64_str_inpainted},{mode}\n".encode())
                self.child.stdin.flush()
                out = self.child.stdout.readline()
                base64_str=out.decode().strip()
                while base64_str and base64_str[0]=="[":
                    print(base64_str)
                    out = self.child.stdout.readline()
                    base64_str=out.decode().strip()
                ret=base64_to_pil(base64_str)
            except:
                print("[PIE] not working, photometric correction is disabled")
                ret=img_inpainted
            return ret
    correction_func = SubprocessCorrection()