File size: 5,097 Bytes
09c675d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
#include "masked_image.h"
#include <algorithm>
#include <iostream>

const cv::Size MaskedImage::kDownsampleKernelSize = cv::Size(6, 6);
const int MaskedImage::kDownsampleKernel[6] = {1, 5, 10, 10, 5, 1};

bool MaskedImage::contains_mask(int y, int x, int patch_size) const {
    auto mask_size = size();
    for (int dy = -patch_size; dy <= patch_size; ++dy) {
        for (int dx = -patch_size; dx <= patch_size; ++dx) {
            int yy = y + dy, xx = x + dx;
            if (yy >= 0 && yy < mask_size.height && xx >= 0 && xx < mask_size.width) {
                if (is_masked(yy, xx) && !is_globally_masked(yy, xx)) return true;
            }
        }
    }
    return false;
}

MaskedImage MaskedImage::downsample() const {
    const auto &kernel_size = MaskedImage::kDownsampleKernelSize;
    const auto &kernel = MaskedImage::kDownsampleKernel;

    const auto size = this->size();
    const auto new_size = cv::Size(size.width / 2, size.height / 2);

    auto ret = MaskedImage(new_size.width, new_size.height);
    if (!m_global_mask.empty()) ret.init_global_mask_mat();
    for (int y = 0; y < size.height - 1; y += 2) {
        for (int x = 0; x < size.width - 1; x += 2) {
            int r = 0, g = 0, b = 0, ksum = 0;
            bool is_gmasked = true;

            for (int dy = -kernel_size.height / 2 + 1; dy <= kernel_size.height / 2; ++dy) {
                for (int dx = -kernel_size.width / 2 + 1; dx <= kernel_size.width / 2; ++dx) {
                    int yy = y + dy, xx = x + dx;
                    if (yy >= 0 && yy < size.height && xx >= 0 && xx < size.width) {
                        if (!is_globally_masked(yy, xx)) {
                            is_gmasked = false;
                        }
                        if (!is_masked(yy, xx)) {
                            auto source_ptr = get_image(yy, xx);
                            int k = kernel[kernel_size.height / 2 - 1 + dy] * kernel[kernel_size.width / 2 - 1 + dx];
                            r += source_ptr[0] * k, g += source_ptr[1] * k, b += source_ptr[2] * k;
                            ksum += k;
                        }
                    }
                }
            }

            if (ksum > 0) r /= ksum, g /= ksum, b /= ksum;

            if (!m_global_mask.empty()) {
                ret.set_global_mask(y / 2, x / 2, is_gmasked);
            }
            if (ksum > 0) {
                auto target_ptr = ret.get_mutable_image(y / 2, x / 2);
                target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
                ret.set_mask(y / 2, x / 2, 0);
            } else {
                ret.set_mask(y / 2, x / 2, 1);
            }
        }
    }

    return ret;
}

MaskedImage MaskedImage::upsample(int new_w, int new_h) const {
    const auto size = this->size();
    auto ret = MaskedImage(new_w, new_h);
    if (!m_global_mask.empty()) ret.init_global_mask_mat();
    for (int y = 0; y < new_h; ++y) {
        for (int x = 0; x < new_w; ++x) {
            int yy = y * size.height / new_h;
            int xx = x * size.width / new_w;

            if (is_globally_masked(yy, xx)) {
                ret.set_global_mask(y, x, 1);
                ret.set_mask(y, x, 1);
            } else {
                if (!m_global_mask.empty()) ret.set_global_mask(y, x, 0);

                if (is_masked(yy, xx)) {
                    ret.set_mask(y, x, 1);
                } else {
                    auto source_ptr = get_image(yy, xx);
                    auto target_ptr = ret.get_mutable_image(y, x);
                    for (int c = 0; c < 3; ++c)
                        target_ptr[c] = source_ptr[c];
                    ret.set_mask(y, x, 0);
                }
            }
        }
    }

    return ret;
}

MaskedImage MaskedImage::upsample(int new_w, int new_h, const cv::Mat &new_global_mask) const {
    auto ret = upsample(new_w, new_h);
    ret.set_global_mask_mat(new_global_mask);
    return ret;
}

void MaskedImage::compute_image_gradients() {
    if (m_image_grad_computed) {
        return;
    }

    const auto size = m_image.size();
    m_image_grady = cv::Mat(size, CV_8UC3);
    m_image_gradx = cv::Mat(size, CV_8UC3);
    m_image_grady = cv::Scalar::all(0);
    m_image_gradx = cv::Scalar::all(0);

    for (int i = 1; i < size.height - 1; ++i) {
        const auto *ptr = m_image.ptr<unsigned char>(i, 0);
        const auto *ptry1 = m_image.ptr<unsigned char>(i + 1, 0);
        const auto *ptry2 = m_image.ptr<unsigned char>(i - 1, 0);
        const auto *ptrx1 = m_image.ptr<unsigned char>(i, 0) + 3;
        const auto *ptrx2 = m_image.ptr<unsigned char>(i, 0) - 3;
        auto *mptry = m_image_grady.ptr<unsigned char>(i, 0);
        auto *mptrx = m_image_gradx.ptr<unsigned char>(i, 0);
        for (int j = 3; j < size.width * 3 - 3; ++j) {
            mptry[j] = (ptry1[j] / 2 - ptry2[j] / 2) + 128;
            mptrx[j] = (ptrx1[j] / 2 - ptrx2[j] / 2) + 128;
        }
    }

    m_image_grad_computed = true;
}

void MaskedImage::compute_image_gradients() const {
    const_cast<MaskedImage *>(this)->compute_image_gradients();
}