File size: 9,495 Bytes
09c675d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
#include <algorithm>
#include <iostream>
#include <opencv2/imgcodecs.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>

#include "inpaint.h"

namespace {
    static std::vector<double> kDistance2Similarity;

    void init_kDistance2Similarity() {
        double base[11] = {1.0, 0.99, 0.96, 0.83, 0.38, 0.11, 0.02, 0.005, 0.0006, 0.0001, 0};
        int length = (PatchDistanceMetric::kDistanceScale + 1);
        kDistance2Similarity.resize(length);
        for (int i = 0; i < length; ++i) {
            double t = (double) i / length;
            int j = (int) (100 * t);
            int k = j + 1;
            double vj = (j < 11) ? base[j] : 0;
            double vk = (k < 11) ? base[k] : 0;
            kDistance2Similarity[i] = vj + (100 * t - j) * (vk - vj);
        }
    }


    inline void _weighted_copy(const MaskedImage &source, int ys, int xs, cv::Mat &target, int yt, int xt, double weight) {
        if (source.is_masked(ys, xs)) return;
        if (source.is_globally_masked(ys, xs)) return;

        auto source_ptr = source.get_image(ys, xs);
        auto target_ptr = target.ptr<double>(yt, xt);

#pragma unroll
        for (int c = 0; c < 3; ++c)
            target_ptr[c] += static_cast<double>(source_ptr[c]) * weight;
        target_ptr[3] += weight;
    }
}

/**
 * This algorithme uses a version proposed by Xavier Philippeau.
 */

Inpainting::Inpainting(cv::Mat image, cv::Mat mask, const PatchDistanceMetric *metric)
    : m_initial(image, mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
    _initialize_pyramid();
}

Inpainting::Inpainting(cv::Mat image, cv::Mat mask, cv::Mat global_mask, const PatchDistanceMetric *metric)
    : m_initial(image, mask, global_mask), m_distance_metric(metric), m_pyramid(), m_source2target(), m_target2source() {
    _initialize_pyramid();
}

void Inpainting::_initialize_pyramid() {
    auto source = m_initial;
    m_pyramid.push_back(source);
    while (source.size().height > m_distance_metric->patch_size() && source.size().width > m_distance_metric->patch_size()) {
        source = source.downsample();
        m_pyramid.push_back(source);
    }

    if (kDistance2Similarity.size() == 0) {
        init_kDistance2Similarity();
    }
}

cv::Mat Inpainting::run(bool verbose, bool verbose_visualize, unsigned int random_seed) {
    srand(random_seed);
    const int nr_levels = m_pyramid.size();

    MaskedImage source, target;
    for (int level = nr_levels - 1; level >= 0; --level) {
        if (verbose) std::cerr << "Inpainting level: " << level << std::endl;

        source = m_pyramid[level];

        if (level == nr_levels - 1) {
            target = source.clone();
            target.clear_mask();
            m_source2target = NearestNeighborField(source, target, m_distance_metric);
            m_target2source = NearestNeighborField(target, source, m_distance_metric);
        } else {
            m_source2target = NearestNeighborField(source, target, m_distance_metric, m_source2target);
            m_target2source = NearestNeighborField(target, source, m_distance_metric, m_target2source);
        }

        if (verbose) std::cerr << "Initialization done." << std::endl;

        if (verbose_visualize) {
            auto visualize_size = m_initial.size();
            cv::Mat source_visualize(visualize_size, m_initial.image().type());
            cv::resize(source.image(), source_visualize, visualize_size);
            cv::imshow("Source", source_visualize);
            cv::Mat target_visualize(visualize_size, m_initial.image().type());
            cv::resize(target.image(), target_visualize, visualize_size);
            cv::imshow("Target", target_visualize);
            cv::waitKey(0);
        }

        target = _expectation_maximization(source, target, level, verbose);
    }

    return target.image();
}

// EM-Like algorithm (see "PatchMatch" - page 6).
// Returns a double sized target image (unless level = 0).
MaskedImage Inpainting::_expectation_maximization(MaskedImage source, MaskedImage target, int level, bool verbose) {
    const int nr_iters_em = 1 + 2 * level;
    const int nr_iters_nnf = static_cast<int>(std::min(7, 1 + level));
    const int patch_size = m_distance_metric->patch_size();

    MaskedImage new_source, new_target;

    for (int iter_em = 0; iter_em < nr_iters_em; ++iter_em) {
        if (iter_em != 0) {
            m_source2target.set_target(new_target);
            m_target2source.set_source(new_target);
            target = new_target;
        }

        if (verbose) std::cerr << "EM Iteration: " << iter_em << std::endl;

        auto size = source.size();
        for (int i = 0; i < size.height; ++i) {
            for (int j = 0; j < size.width; ++j) {
                if (!source.contains_mask(i, j, patch_size)) {
                    m_source2target.set_identity(i, j);
                    m_target2source.set_identity(i, j);
                }
            }
        }
        if (verbose) std::cerr << "  NNF minimization started." << std::endl;
        m_source2target.minimize(nr_iters_nnf);
        m_target2source.minimize(nr_iters_nnf);
        if (verbose) std::cerr << "  NNF minimization finished." << std::endl;

        // Instead of upsizing the final target, we build the last target from the next level source image.
        // Thus, the final target is less blurry (see "Space-Time Video Completion" - page 5).
        bool upscaled = false;
        if (level >= 1 && iter_em == nr_iters_em - 1) {
            new_source = m_pyramid[level - 1];
            new_target = target.upsample(new_source.size().width, new_source.size().height, m_pyramid[level - 1].global_mask());
            upscaled = true;
        } else {
            new_source = m_pyramid[level];
            new_target = target.clone();
        }

        auto vote = cv::Mat(new_target.size(), CV_64FC4);
        vote.setTo(cv::Scalar::all(0));

        // Votes for best patch from NNF Source->Target (completeness) and Target->Source (coherence).
        _expectation_step(m_source2target, 1, vote, new_source, upscaled);
        if (verbose) std::cerr << "  Expectation source to target finished." << std::endl;
        _expectation_step(m_target2source, 0, vote, new_source, upscaled);
        if (verbose) std::cerr << "  Expectation target to source finished." << std::endl;

        // Compile votes and update pixel values.
        _maximization_step(new_target, vote);
        if (verbose) std::cerr << "  Minimization step finished." << std::endl;
    }

    return new_target;
}

// Expectation step: vote for best estimations of each pixel.
void Inpainting::_expectation_step(
    const NearestNeighborField &nnf, bool source2target,
    cv::Mat &vote, const MaskedImage &source, bool upscaled
) {
    auto source_size = nnf.source_size();
    auto target_size = nnf.target_size();
    const int patch_size = m_distance_metric->patch_size();

    for (int i = 0; i < source_size.height; ++i) {
        for (int j = 0; j < source_size.width; ++j) {
            if (nnf.source().is_globally_masked(i, j)) continue;
            int yp = nnf.at(i, j, 0), xp = nnf.at(i, j, 1), dp = nnf.at(i, j, 2);
            double w = kDistance2Similarity[dp];

            for (int di = -patch_size; di <= patch_size; ++di) {
                for (int dj = -patch_size; dj <= patch_size; ++dj) {
                    int ys = i + di, xs = j + dj, yt = yp + di, xt = xp + dj;
                    if (!(ys >= 0 && ys < source_size.height && xs >= 0 && xs < source_size.width)) continue;
                    if (nnf.source().is_globally_masked(ys, xs)) continue;
                    if (!(yt >= 0 && yt < target_size.height && xt >= 0 && xt < target_size.width)) continue;
                    if (nnf.target().is_globally_masked(yt, xt)) continue;

                    if (!source2target) {
                        std::swap(ys, yt);
                        std::swap(xs, xt);
                    }

                    if (upscaled) {
                        for (int uy = 0; uy < 2; ++uy) {
                            for (int ux = 0; ux < 2; ++ux) {
                                _weighted_copy(source, 2 * ys + uy, 2 * xs + ux, vote, 2 * yt + uy, 2 * xt + ux, w);
                            }
                        }
                    } else {
                        _weighted_copy(source, ys, xs, vote, yt, xt, w);
                    }
                }
            }
        }
    }
}

// Maximization Step: maximum likelihood of target pixel.
void Inpainting::_maximization_step(MaskedImage &target, const cv::Mat &vote) {
    auto target_size = target.size();
    for (int i = 0; i < target_size.height; ++i) {
        for (int j = 0; j < target_size.width; ++j) {
            const double *source_ptr = vote.ptr<double>(i, j);
            unsigned char *target_ptr = target.get_mutable_image(i, j);

            if (target.is_globally_masked(i, j)) {
                continue;
            }

            if (source_ptr[3] > 0) {
                unsigned char r = cv::saturate_cast<unsigned char>(source_ptr[0] / source_ptr[3]);
                unsigned char g = cv::saturate_cast<unsigned char>(source_ptr[1] / source_ptr[3]);
                unsigned char b = cv::saturate_cast<unsigned char>(source_ptr[2] / source_ptr[3]);
                target_ptr[0] = r, target_ptr[1] = g, target_ptr[2] = b;
            } else {
                target.set_mask(i, j, 0);
            }
        }
    }
}