from flax import nnx import jax.numpy as jnp from jax import Array as Tensor from transformers import (FlaxCLIPTextModel, CLIPTokenizer, FlaxT5EncoderModel, T5Tokenizer) class HFEmbedder(nnx.Module): def __init__(self, version: str, max_length: int, **hf_kwargs): self.is_clip = version.startswith("openai") self.max_length = max_length self.output_key = "pooler_output" if self.is_clip else "last_hidden_state" dtype = hf_kwargs.get("dtype", jnp.float32) if self.is_clip: self.tokenizer: CLIPTokenizer = CLIPTokenizer.from_pretrained(version, max_length=max_length) # self.hf_module: CLIPTextModel = CLIPTextModel.from_pretrained(version, **hf_kwargs) self.hf_module, params = FlaxCLIPTextModel.from_pretrained(version, _do_init=False, **hf_kwargs) else: self.tokenizer: T5Tokenizer = T5Tokenizer.from_pretrained(version, max_length=max_length) # self.hf_module: T5EncoderModel = T5EncoderModel.from_pretrained(version, **hf_kwargs) self.hf_module, params = FlaxT5EncoderModel.from_pretrained(version, _do_init=False,**hf_kwargs) self.hf_module._is_initialized = True import jax self.hf_module.params = jax.tree_map(lambda x: jax.device_put(x, jax.devices("cuda")[0]), params) # if dtype==jnp.bfloat16: def tokenize(self, text: list[str]) -> Tensor: batch_encoding = self.tokenizer( text, truncation=True, max_length=self.max_length, return_length=False, return_overflowing_tokens=False, padding="max_length", return_tensors="jax", ) return batch_encoding["input_ids"] def __call__(self, input_ids: Tensor) -> Tensor: # outputs = self.hf_module( # input_ids=batch_encoding["input_ids"].to(self.hf_module.device), # attention_mask=None, # output_hidden_states=False, # ) outputs = self.hf_module( input_ids=input_ids, attention_mask=None, output_hidden_states=False, train=False, ) return outputs[self.output_key] # def __call__(self, text: list[str]) -> Tensor: # batch_encoding = self.tokenizer( # text, # truncation=True, # max_length=self.max_length, # return_length=False, # return_overflowing_tokens=False, # padding="max_length", # return_tensors="jax", # ) # # outputs = self.hf_module( # # input_ids=batch_encoding["input_ids"].to(self.hf_module.device), # # attention_mask=None, # # output_hidden_states=False, # # ) # outputs = self.hf_module( # input_ids=batch_encoding["input_ids"], # attention_mask=None, # output_hidden_states=False, # train=False, # ) # return outputs[self.output_key]