Spaces:
Runtime error
Runtime error
import math | |
from dataclasses import dataclass | |
import jax | |
import jax.numpy as jnp | |
from jax import Array as Tensor | |
from flax import nnx | |
from einops import rearrange | |
from flux.wrapper import TorchWrapper | |
from flux.math import attention, rope | |
class EmbedND(nnx.Module): | |
def __init__(self, dim: int, theta: int, axes_dim: list[int], dtype=jnp.float32, rngs: nnx.Rngs = None): | |
self.dim = dim | |
self.theta = theta | |
self.axes_dim = axes_dim | |
def __call__(self, ids: Tensor) -> Tensor: | |
n_axes = ids.shape[-1] | |
# emb = torch.cat( | |
# [rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
# dim=-3, | |
# ) | |
emb = jnp.concatenate( | |
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)], | |
axis=-3, | |
) | |
# return emb.unsqueeze(1) | |
return jnp.expand_dims(emb, 1) | |
def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): | |
""" | |
Create sinusoidal timestep embeddings. | |
:param t: a 1-D Tensor of N indices, one per batch element. | |
These may be fractional. | |
:param dim: the dimension of the output. | |
:param max_period: controls the minimum frequency of the embeddings. | |
:return: an (N, D) Tensor of positional embeddings. | |
""" | |
t = time_factor * t | |
half = dim // 2 | |
# freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to( | |
# t.device | |
# ) | |
freqs = jnp.exp(-math.log(max_period) * jnp.arange(half, dtype=jnp.float32) / half) | |
# args = t[:, None].float() * freqs[None] | |
# embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) | |
args = t[:, None] * freqs[None] | |
embedding = jnp.concatenate([jnp.cos(args), jnp.sin(args)], axis=-1) | |
if dim % 2: | |
# embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) | |
embedding = jnp.concatenate([embedding, jnp.zeros_like(embedding[:, :1])], axis=-1) | |
# if torch.is_floating_point(t): | |
# embedding = embedding.to(t) | |
# return embedding | |
if jnp.issubdtype(t.dtype, jnp.floating): | |
embedding = embedding.astype(t.dtype) | |
return embedding | |
class MLPEmbedder(nnx.Module): | |
def __init__(self, in_dim: int, hidden_dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True) | |
self.silu = nn.SiLU() | |
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True) | |
def __call__(self, x: Tensor) -> Tensor: | |
return self.out_layer(self.silu(self.in_layer(x))) | |
class RMSNorm(nnx.Module): | |
def __init__(self, dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
# self.scale = nn.Parameter(torch.ones(dim)) | |
self.scale = nn.Parameter(jnp.ones((dim,))) | |
def __call__(self, x: Tensor): | |
x_dtype = x.dtype | |
# x = x.float() | |
x = x.astype(jnp.float32) | |
# rrms = torch.rsqrt(torch.mean(x**2, dim=-1, keepdim=True) + 1e-6) | |
rrms = jax.lax.rsqrt(jnp.mean(x**2, axis=-1, keepdims=True) + 1e-6) | |
# return (x * rrms).to(dtype=x_dtype) * self.scale | |
return (x * rrms).astype(x.dtype) * self.scale | |
RMSNorm_class = RMSNorm | |
class QKNorm(nnx.Module): | |
def __init__(self, dim: int, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
RMSNorm = nn.declare_with_rng(RMSNorm_class) | |
self.query_norm = RMSNorm(dim) | |
self.key_norm = RMSNorm(dim) | |
def __call__(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: | |
q = self.query_norm(q) | |
k = self.key_norm(k) | |
# return q.to(v), k.to(v) | |
return q.astype(v.dtype), k.astype(v.dtype) | |
QKNorm_class = QKNorm | |
class SelfAttention(nnx.Module): | |
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
QKNorm = nn.declare_with_rng(QKNorm_class) | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.norm = QKNorm(head_dim) | |
self.proj = nn.Linear(dim, dim) | |
def __call__(self, x: Tensor, pe: Tensor) -> Tensor: | |
qkv = self.qkv(x) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
x = attention(q, k, v, pe=pe) | |
x = self.proj(x) | |
return x | |
class ModulationOut: | |
shift: Tensor | |
scale: Tensor | |
gate: Tensor | |
class Modulation(nnx.Module): | |
def __init__(self, dim: int, double: bool, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
self.is_double = double | |
self.multiplier = 6 if double else 3 | |
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True) | |
def __call__(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: | |
# out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1) | |
out = self.lin(nnx.silu(vec))[:, None, :] | |
out = jnp.split(out, self.multiplier, axis=-1) | |
return ( | |
ModulationOut(*out[:3]), | |
ModulationOut(*out[3:]) if self.is_double else None, | |
) | |
Modulation_class, SelfAttention_class = Modulation, SelfAttention | |
class DoubleStreamBlock(nnx.Module): | |
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
Modulation, SelfAttention = nn.declare_with_rng(Modulation_class, SelfAttention_class) | |
mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
self.num_heads = num_heads | |
self.hidden_size = hidden_size | |
self.img_mod = Modulation(hidden_size, double=True) | |
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.img_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
self.txt_mod = Modulation(hidden_size, double=True) | |
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias) | |
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.txt_mlp = nn.Sequential( | |
nn.Linear(hidden_size, mlp_hidden_dim, bias=True), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(mlp_hidden_dim, hidden_size, bias=True), | |
) | |
def __call__(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]: | |
img_mod1, img_mod2 = self.img_mod(vec) | |
txt_mod1, txt_mod2 = self.txt_mod(vec) | |
# prepare image for attention | |
img_modulated = self.img_norm1(img) | |
img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift | |
img_qkv = self.img_attn.qkv(img_modulated) | |
img_q, img_k, img_v = rearrange(img_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) | |
# prepare txt for attention | |
txt_modulated = self.txt_norm1(txt) | |
txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift | |
txt_qkv = self.txt_attn.qkv(txt_modulated) | |
txt_q, txt_k, txt_v = rearrange(txt_qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) | |
# run actual attention | |
# q = torch.cat((txt_q, img_q), dim=2) | |
# k = torch.cat((txt_k, img_k), dim=2) | |
# v = torch.cat((txt_v, img_v), dim=2) | |
q = jnp.concatenate((txt_q, img_q), axis=2) | |
k = jnp.concatenate((txt_k, img_k), axis=2) | |
v = jnp.concatenate((txt_v, img_v), axis=2) | |
attn = attention(q, k, v, pe=pe) | |
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] | |
# calculate the img bloks | |
img = img + img_mod1.gate * self.img_attn.proj(img_attn) | |
img = img + img_mod2.gate * self.img_mlp((1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift) | |
# calculate the txt bloks | |
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) | |
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift) | |
return img, txt | |
class SingleStreamBlock(nnx.Module): | |
""" | |
A DiT block with parallel linear layers as described in | |
https://arxiv.org/abs/2302.05442 and adapted modulation interface. | |
""" | |
def __init__( | |
self, | |
hidden_size: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qk_scale: float | None = None, | |
dtype=jnp.float32, rngs: nnx.Rngs = None | |
): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
QKNorm, Modulation = nn.declare_with_rng(QKNorm_class, Modulation_class) | |
self.hidden_dim = hidden_size | |
self.num_heads = num_heads | |
head_dim = hidden_size // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.mlp_hidden_dim = int(hidden_size * mlp_ratio) | |
# qkv and mlp_in | |
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) | |
# proj and mlp_out | |
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size) | |
self.norm = QKNorm(head_dim) | |
self.hidden_size = hidden_size | |
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.mlp_act = nn.GELU(approximate="tanh") | |
self.modulation = Modulation(hidden_size, double=False) | |
def __call__(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: | |
mod, _ = self.modulation(vec) | |
x_mod = (1 + mod.scale) * self.pre_norm(x) + mod.shift | |
# qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1) | |
qkv, mlp = jnp.split(self.linear1(x_mod), [3 * self.hidden_size,], axis=-1) | |
q, k, v = rearrange(qkv, "B L (K H D) -> K B H L D", K=3, H=self.num_heads) | |
q, k = self.norm(q, k, v) | |
# compute attention | |
attn = attention(q, k, v, pe=pe) | |
# compute activation in mlp stream, cat again and run second linear layer | |
# output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)) | |
output = self.linear2(jnp.concatenate((attn, self.mlp_act(mlp)), axis=2)) | |
return x + mod.gate * output | |
class LastLayer(nnx.Module): | |
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=jnp.float32, rngs: nnx.Rngs = None): | |
nn = TorchWrapper(rngs=rngs, dtype=dtype) | |
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) | |
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True) | |
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True)) | |
def __call__(self, x: Tensor, vec: Tensor) -> Tensor: | |
# shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) | |
shift, scale = jnp.split(self.adaLN_modulation(vec), 2, axis=1) | |
x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] | |
x = self.linear(x) | |
return x | |