Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,323 Bytes
eb61b6f c64cd4d eb61b6f c64cd4d eb61b6f c64cd4d eb61b6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 |
import gradio as gr
from huggingface_hub import InferenceClient
from sae_auto_interp.sae import Sae
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
yield response
CITATION_BUTTON_TEXT = """
@misc{zhang2024largemultimodalmodelsinterpret,
title={Large Multi-modal Models Can Interpret Features in Large Multi-modal Models},
author={Kaichen Zhang and Yifei Shen and Bo Li and Ziwei Liu},
year={2024},
eprint={2411.14982},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2411.14982},
}
"""
with gr.Blocks() as demo:
gr.Markdown(
"""
# Large Multi-modal Models Can Interpret Features in Large Multi-modal Models
π [ArXiv Paper](https://arxiv.org/abs/2411.14982) | π [LMMs-Lab Homepage](https://lmms-lab.framer.ai) | π€ [Huggingface Collections](https://huggingface.co./collections/lmms-lab/llava-sae-674026e4e7bc8c29c70bc3a3)
"""
)
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("Visualization of Activations", elem_id="visualization", id=0):
image = gr.Image()
with gr.TabItem("Steering Model", elem_id="steering", id=2):
chatbot = gr.Chatbot()
with gr.Row():
with gr.Accordion("π Citation", open=False):
gr.Markdown("```bib\n" + CITATION_BUTTON_TEXT + "\n```")
if __name__ == "__main__":
demo.launch()
|