Spaces:
Runtime error
Runtime error
import gradio as gr | |
import jax | |
import jax.numpy as jnp | |
import numpy as np | |
from flax.jax_utils import replicate | |
from flax.training.common_utils import shard | |
from PIL import Image | |
from diffusers import FlaxStableDiffusionControlNetPipeline, FlaxControlNetModel | |
import cv2 | |
title = "ControlNet for Cartoon-ifying" | |
description = "This is a demo on ControlNet for changing images of people into cartoons of different styles." | |
examples = [["./simpsons_human_1.jpg", "turn into a simpsons character", "./simpsons_animated_1.jpg"]] | |
# Constants | |
low_threshold = 100 | |
high_threshold = 200 | |
base_model_path = "runwayml/stable-diffusion-v1-5" | |
controlnet_path = "lmattingly/controlnet-uncanny-simpsons-v2-0" | |
#controlnet_path = "JFoz/dog-cat-pose" | |
# Models | |
controlnet, controlnet_params = FlaxControlNetModel.from_pretrained( | |
controlnet_path, dtype=jnp.bfloat16 | |
) | |
pipe, params = FlaxStableDiffusionControlNetPipeline.from_pretrained( | |
base_model_path, controlnet=controlnet, revision="flax", dtype=jnp.bfloat16 | |
) | |
def canny_filter(image): | |
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) | |
blurred_image = cv2.GaussianBlur(gray_image, (5, 5), 0) | |
edges_image = cv2.Canny(blurred_image, 50, 150) | |
canny_image = Image.fromarray(edges_image) | |
return canny_image | |
def canny_filter2(image): | |
low_threshold = 100 | |
high_threshold = 200 | |
image = cv2.Canny(image, low_threshold, high_threshold) | |
image = image[:, :, None] | |
image = np.concatenate([image, image, image], axis=2) | |
canny_image = Image.fromarray(image) | |
return canny_image | |
def resize_image(im, max_size): | |
im_np = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
height, width = im_np.shape[:2] | |
scale_factor = max_size / max(height, width) | |
resized_np = cv2.resize(im_np, (int(width * scale_factor), int(height * scale_factor))) | |
resized_im = Image.fromarray(resized_np) | |
return resized_im | |
def create_key(seed=0): | |
return jax.random.PRNGKey(seed) | |
def infer(prompts, image): | |
params["controlnet"] = controlnet_params | |
im = image | |
image = canny_filter2(im) | |
#image = canny_filter(im) | |
#image = Image.fromarray(im) | |
num_samples = 1 #jax.device_count() | |
rng = create_key(0) | |
rng = jax.random.split(rng, jax.device_count()) | |
prompt_ids = pipe.prepare_text_inputs([prompts] * num_samples) | |
processed_image = pipe.prepare_image_inputs([image] * num_samples) | |
p_params = replicate(params) | |
prompt_ids = shard(prompt_ids) | |
processed_image = shard(processed_image) | |
output = pipe( | |
prompt_ids=prompt_ids, | |
image=processed_image, | |
params=p_params, | |
prng_seed=rng, | |
num_inference_steps=5, | |
jit=True, | |
).images | |
output_images = pipe.numpy_to_pil(np.asarray(output.reshape((num_samples,) + output.shape[-3:]))) | |
return output_images | |
gr.Interface(fn = infer, inputs = ["text", "image"], outputs = "gallery", | |
title = title, description = description, theme='gradio/soft', | |
examples=[["a simpsons cartoon character", "simpsons_human_1.jpg"]] | |
).launch() | |