File size: 29,312 Bytes
8bedda3
72650c2
c3df5b3
8130dc1
8bedda3
c3df5b3
8bedda3
72650c2
1edf6fb
8bedda3
 
df02c32
 
72650c2
 
 
8bedda3
 
1edf6fb
 
 
 
8bedda3
1edf6fb
 
 
 
e121d4e
13ecd9b
 
1edf6fb
 
 
72650c2
e022a14
df2a130
 
 
 
0bcfc15
df2a130
99bab3b
e022a14
 
 
 
 
 
 
 
 
99bab3b
 
df2a130
 
 
1edf6fb
 
7e04c2f
bf3bf20
1edf6fb
 
 
 
 
 
72650c2
 
8bedda3
72650c2
 
 
 
8bedda3
 
 
 
 
 
72650c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fb2c04
72650c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edf6fb
 
 
 
 
 
 
 
 
 
6ed21d5
1edf6fb
 
 
 
 
 
 
 
 
 
 
 
 
ed08878
 
13ecd9b
 
ed08878
13ecd9b
 
ed08878
 
 
13ecd9b
 
 
 
 
 
 
 
 
 
 
 
ed08878
0bcfc15
fc39491
13ecd9b
 
fc39491
f61ae52
1edf6fb
fc39491
 
 
13ecd9b
 
 
 
 
 
 
 
fc39491
 
13ecd9b
 
ed08878
99bab3b
 
 
 
 
 
 
0bcfc15
ed08878
13ecd9b
1edf6fb
 
 
 
ca548d8
ed08878
 
 
 
 
 
13ecd9b
 
ed08878
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edf6fb
9b416dc
99bab3b
 
 
0bcfc15
99bab3b
 
 
 
 
 
 
 
0bcfc15
99bab3b
 
 
 
 
 
ed08878
1edf6fb
e022a14
 
72650c2
1edf6fb
72650c2
 
8bedda3
 
ce16823
e022a14
 
 
 
 
 
99bab3b
 
 
 
 
 
72650c2
1edf6fb
72650c2
 
1edf6fb
 
 
 
 
 
df2a130
 
ed08878
99bab3b
 
 
 
e022a14
 
ed08878
1edf6fb
 
 
 
 
 
 
 
fa37411
1edf6fb
 
99bab3b
1edf6fb
 
 
 
 
 
fa37411
1edf6fb
 
 
 
df2a130
1edf6fb
 
ed08878
e022a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1edf6fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8bedda3
72650c2
8bedda3
13ecd9b
99bab3b
13ecd9b
 
 
 
 
 
 
 
 
99bab3b
13ecd9b
e022a14
 
13ecd9b
e022a14
99bab3b
 
 
0ba05dc
13ecd9b
 
 
99bab3b
13ecd9b
 
 
 
 
 
 
 
 
99bab3b
13ecd9b
 
 
 
 
 
 
 
 
 
 
 
99bab3b
13ecd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99bab3b
13ecd9b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e022a14
 
 
 
 
 
 
 
ed08878
e022a14
1edf6fb
67596d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49e21e1
1edf6fb
 
 
8bedda3
ed08878
9b416dc
 
 
 
 
 
 
 
 
 
 
4ed001b
e022a14
 
 
 
 
9b416dc
 
 
 
 
 
 
ed08878
4ed001b
 
 
 
 
 
9b416dc
 
 
ed08878
e121d4e
 
 
ed08878
 
e121d4e
 
 
 
 
 
 
 
 
 
ed08878
 
dcb1547
 
 
f0939aa
 
 
 
ed5bd07
 
f0939aa
ed5bd07
 
 
 
b1245be
f0939aa
 
 
 
 
 
 
 
 
ed5bd07
9b416dc
8bedda3
72650c2
 
e121d4e
4ed001b
 
8bedda3
 
e121d4e
cbcf31f
9b416dc
8bedda3
72650c2
1edf6fb
72650c2
8bedda3
 
 
c3df5b3
 
 
fc39491
 
c3df5b3
 
8130dc1
 
 
 
 
 
 
 
 
fc39491
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
"""A gradio app that renders a static leaderboard. This is used for Hugging Face Space."""
import ast
import argparse
import glob
import pickle

import gradio as gr
import numpy as np
import pandas as pd


# notebook_url = "https://colab.research.google.com/drive/1RAWb22-PFNI-X1gPVzc927SGUdfr6nsR?usp=sharing"
notebook_url = "https://colab.research.google.com/drive/1KdwokPjirkTmpO_P1WByFNFiqxWQquwH#scrollTo=o_CpbkGEbhrK"

basic_component_values = [None] * 6
leader_component_values = [None] * 5


def make_default_md(arena_df, elo_results):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)

    leaderboard_md = f"""
# πŸ† LMSYS Chatbot Arena Leaderboard
| [Vote](https://chat.lmsys.org) | [Blog](https://lmsys.org/blog/2023-05-03-arena/) | [GitHub](https://github.com/lm-sys/FastChat) | [Paper](https://arxiv.org/abs/2306.05685) | [Dataset](https://github.com/lm-sys/FastChat/blob/main/docs/dataset_release.md) | [Twitter](https://twitter.com/lmsysorg) | [Discord](https://discord.gg/HSWAKCrnFx) |

LMSYS [Chatbot Arena](https://lmsys.org/blog/2023-05-03-arena/) is a crowdsourced open platform for LLM evals.
We've collected over **500,000** human preference votes to rank LLMs with the Elo ranking system. Contribute your vote πŸ—³οΈ at [chat.lmsys.org](https://chat.lmsys.org)!

Code to recreate leaderboard tables and plots in this [notebook]({notebook_url}) and more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
"""
    return leaderboard_md


def make_arena_leaderboard_md(arena_df):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "   "
    leaderboard_md = f"""
Total #models: **{total_models}**.{space} Total #votes: **{"{:,}".format(total_votes)}**.{space} Last updated: April 9, 2024.

πŸ“£ **NEW!** View leaderboard for different categories (e.g., coding, long user query)!
"""
    return leaderboard_md

def make_category_arena_leaderboard_md(arena_df, arena_subset_df, name="Overall"):
    total_votes = sum(arena_df["num_battles"]) // 2
    total_models = len(arena_df)
    space = "   "
    total_subset_votes = sum(arena_subset_df["num_battles"]) // 2
    total_subset_models = len(arena_subset_df)
    leaderboard_md = f"""### {cat_name_to_explanation[name]}
#### [Coverage] {space} #models: **{total_subset_models} ({round(total_subset_models/total_models *100)}%)** {space} #votes: **{"{:,}".format(total_subset_votes)} ({round(total_subset_votes/total_votes * 100)}%)**{space}
"""
    return leaderboard_md

def make_full_leaderboard_md(elo_results):
    leaderboard_md = f"""
Three benchmarks are displayed: **Arena Elo**, **MT-Bench** and **MMLU**.
- [Chatbot Arena](https://chat.lmsys.org/?arena) - a crowdsourced, randomized battle platform. We use 500K+ user votes to compute Elo ratings.
- [MT-Bench](https://arxiv.org/abs/2306.05685): a set of challenging multi-turn questions. We use GPT-4 to grade the model responses.
- [MMLU](https://arxiv.org/abs/2009.03300) (5-shot): a test to measure a model's multitask accuracy on 57 tasks.

πŸ’» Code: The MT-bench scores (single-answer grading on a scale of 10) are computed by [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).
The MMLU scores are mostly computed by [InstructEval](https://github.com/declare-lab/instruct-eval).
Higher values are better for all benchmarks. Empty cells mean not available.
"""
    return leaderboard_md


def make_leaderboard_md_live(elo_results):
    leaderboard_md = f"""
# Leaderboard
Last updated: {elo_results["last_updated_datetime"]}
{elo_results["leaderboard_table"]}
"""
    return leaderboard_md


def update_elo_components(max_num_files, elo_results_file):
    log_files = get_log_files(max_num_files)

    # Leaderboard
    if elo_results_file is None:  # Do live update
        battles = clean_battle_data(log_files)
        elo_results = report_elo_analysis_results(battles)

        leader_component_values[0] = make_leaderboard_md_live(elo_results)
        leader_component_values[1] = elo_results["win_fraction_heatmap"]
        leader_component_values[2] = elo_results["battle_count_heatmap"]
        leader_component_values[3] = elo_results["bootstrap_elo_rating"]
        leader_component_values[4] = elo_results["average_win_rate_bar"]

    # Basic stats
    basic_stats = report_basic_stats(log_files)
    md0 = f"Last updated: {basic_stats['last_updated_datetime']}"

    md1 = "### Action Histogram\n"
    md1 += basic_stats["action_hist_md"] + "\n"

    md2 = "### Anony. Vote Histogram\n"
    md2 += basic_stats["anony_vote_hist_md"] + "\n"

    md3 = "### Model Call Histogram\n"
    md3 += basic_stats["model_hist_md"] + "\n"

    md4 = "### Model Call (Last 24 Hours)\n"
    md4 += basic_stats["num_chats_last_24_hours"] + "\n"

    basic_component_values[0] = md0
    basic_component_values[1] = basic_stats["chat_dates_bar"]
    basic_component_values[2] = md1
    basic_component_values[3] = md2
    basic_component_values[4] = md3
    basic_component_values[5] = md4


def update_worker(max_num_files, interval, elo_results_file):
    while True:
        tic = time.time()
        update_elo_components(max_num_files, elo_results_file)
        durtaion = time.time() - tic
        print(f"update duration: {durtaion:.2f} s")
        time.sleep(max(interval - durtaion, 0))


def load_demo(url_params, request: gr.Request):
    logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}")
    return basic_component_values + leader_component_values


def model_hyperlink(model_name, link):
    return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'


def load_leaderboard_table_csv(filename, add_hyperlink=True):
    lines = open(filename).readlines()
    heads = [v.strip() for v in lines[0].split(",")]
    rows = []
    for i in range(1, len(lines)):
        row = [v.strip() for v in lines[i].split(",")]
        for j in range(len(heads)):
            item = {}
            for h, v in zip(heads, row):
                if h == "Arena Elo rating":
                    if v != "-":
                        v = int(ast.literal_eval(v))
                    else:
                        v = np.nan
                elif h == "MMLU":
                    if v != "-":
                        v = round(ast.literal_eval(v) * 100, 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (win rate %)":
                    if v != "-":
                        v = round(ast.literal_eval(v[:-1]), 1)
                    else:
                        v = np.nan
                elif h == "MT-bench (score)":
                    if v != "-":
                        v = round(ast.literal_eval(v), 2)
                    else:
                        v = np.nan
                item[h] = v
            if add_hyperlink:
                item["Model"] = model_hyperlink(item["Model"], item["Link"])
        rows.append(item)

    return rows


def build_basic_stats_tab():
    empty = "Loading ..."
    basic_component_values[:] = [empty, None, empty, empty, empty, empty]

    md0 = gr.Markdown(empty)
    gr.Markdown("#### Figure 1: Number of model calls and votes")
    plot_1 = gr.Plot(show_label=False)
    with gr.Row():
        with gr.Column():
            md1 = gr.Markdown(empty)
        with gr.Column():
            md2 = gr.Markdown(empty)
    with gr.Row():
        with gr.Column():
            md3 = gr.Markdown(empty)
        with gr.Column():
            md4 = gr.Markdown(empty)
    return [md0, plot_1, md1, md2, md3, md4]

def get_full_table(arena_df, model_table_df):
    values = []
    for i in range(len(model_table_df)):
        row = []
        model_key = model_table_df.iloc[i]["key"]
        model_name = model_table_df.iloc[i]["Model"]
        # model display name
        row.append(model_name)
        if model_key in arena_df.index:
            idx = arena_df.index.get_loc(model_key)
            row.append(round(arena_df.iloc[idx]["rating"]))
        else:
            row.append(np.nan)
        row.append(model_table_df.iloc[i]["MT-bench (score)"])
        row.append(model_table_df.iloc[i]["MMLU"])
        # Organization
        row.append(model_table_df.iloc[i]["Organization"])
        # license
        row.append(model_table_df.iloc[i]["License"])

        values.append(row)
    values.sort(key=lambda x: -x[1] if not np.isnan(x[1]) else 1e9)
    return values

def create_ranking_str(ranking, ranking_difference):
    if ranking_difference > 0:
        # return f"{int(ranking)} (\u2191{int(ranking_difference)})"
        return f"{int(ranking)} \u2191"
    elif ranking_difference < 0:
        # return f"{int(ranking)} (\u2193{int(-ranking_difference)})"
        return f"{int(ranking)} \u2193"
    else:
        return f"{int(ranking)}"
    
def recompute_final_ranking(arena_df):
    # compute ranking based on CI
    ranking = {}
    for i, model_a in enumerate(arena_df.index):
        ranking[model_a] = 1
        for j, model_b in enumerate(arena_df.index):
            if i == j:
                continue
            if arena_df.loc[model_b]["rating_q025"] > arena_df.loc[model_a]["rating_q975"]:
                ranking[model_a] += 1
    return list(ranking.values())
    
def get_arena_table(arena_df, model_table_df, arena_subset_df=None):
    arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
    arena_df = arena_df[arena_df["num_battles"] > 2000]
    arena_df["final_ranking"] = recompute_final_ranking(arena_df)
    arena_df = arena_df.sort_values(by=["final_ranking"], ascending=True)

    # arena_df["final_ranking"] = range(1, len(arena_df) + 1)
    # sort by rating
    if arena_subset_df is not None:
        # filter out models not in the arena_df
        arena_subset_df = arena_subset_df[arena_subset_df.index.isin(arena_df.index)]
        arena_subset_df = arena_subset_df.sort_values(by=["rating"], ascending=False)
        # arena_subset_df = arena_subset_df.sort_values(by=["final_ranking"], ascending=True)
        # arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
        arena_subset_df["final_ranking"] = recompute_final_ranking(arena_subset_df)
        # keep only the models in the subset in arena_df and recompute final_ranking
        arena_df = arena_df[arena_df.index.isin(arena_subset_df.index)]
        # recompute final ranking
        arena_df["final_ranking"] = recompute_final_ranking(arena_df)

        # assign ranking by the order
        arena_subset_df["final_ranking_no_tie"] = range(1, len(arena_subset_df) + 1)
        arena_df["final_ranking_no_tie"] = range(1, len(arena_df) + 1)
        # join arena_df and arena_subset_df on index
        arena_df = arena_subset_df.join(arena_df["final_ranking"], rsuffix="_global", how="inner")
        arena_df["ranking_difference"] =  arena_df["final_ranking_global"] - arena_df["final_ranking"]

        # no tie version
        # arena_df = arena_subset_df.join(arena_df["final_ranking_no_tie"], rsuffix="_global", how="inner")
        # arena_df["ranking_difference"] =  arena_df["final_ranking_no_tie_global"] - arena_df["final_ranking_no_tie"]

        arena_df = arena_df.sort_values(by=["final_ranking", "rating"], ascending=[True, False])
        arena_df["final_ranking"] = arena_df.apply(lambda x: create_ranking_str(x["final_ranking"], x["ranking_difference"]), axis=1)

    values = []
    for i in range(len(arena_df)):
        row = []
        model_key = arena_df.index[i]
        try: # this is a janky fix for where the model key is not in the model table (model table and arena table dont contain all the same models)
            model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
                0
            ]
            # rank
            ranking = arena_df.iloc[i].get("final_ranking") or i+1
            row.append(ranking)
            if arena_subset_df is not None:
                row.append(arena_df.iloc[i].get("ranking_difference") or 0)
            # model display name
            row.append(model_name)
            # elo rating
            row.append(round(arena_df.iloc[i]["rating"]))
            upper_diff = round(
                arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"]
            )
            lower_diff = round(
                arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"]
            )
            row.append(f"+{upper_diff}/-{lower_diff}")
            # num battles
            row.append(round(arena_df.iloc[i]["num_battles"]))
            # Organization
            row.append(
                model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
            )
            # license
            row.append(
                model_table_df[model_table_df["key"] == model_key]["License"].values[0]
            )
            cutoff_date = model_table_df[model_table_df["key"] == model_key]["Knowledge cutoff date"].values[0]
            if cutoff_date == "-":
                row.append("Unknown")
            else:
                row.append(cutoff_date)
            values.append(row)
        except Exception as e:
            print(f"{model_key} - {e}")
    return values

key_to_category_name = {
    "full": "Overall",
    "coding": "Coding",
    "long_user": "Longer Query",
    "english": "English",
    "chinese": "Chinese",
    "no_tie": "Exclude Ties",
    "no_short": "Exclude Short",
}
cat_name_to_explanation = {
    "Overall": "Overall Questions",
    "Coding": "Coding: whether conversation contains code snippets",
    "Longer Query": "Longer Query (>= 500 tokens)",
    "English": "English Prompts",
    "Chinese": "Chinese Prompts",
    "Exclude Ties": "Exclude Ties and Bothbad",
    "Exclude Short": "User Query >= 5 tokens",
}


def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=False):
    arena_dfs = {}
    category_elo_results = {}
    if elo_results_file is None:  # Do live update
        default_md = "Loading ..."
        p1 = p2 = p3 = p4 = None
    else:
        with open(elo_results_file, "rb") as fin:
            elo_results = pickle.load(fin)
            if "full" in elo_results:
                print("KEYS ", elo_results.keys())
                for k in elo_results.keys():
                    for k in key_to_category_name:
                        arena_dfs[key_to_category_name[k]] = elo_results[k]["leaderboard_table_df"]
                        category_elo_results[key_to_category_name[k]] = elo_results[k]

        p1 = category_elo_results["Overall"]["win_fraction_heatmap"]
        p2 = category_elo_results["Overall"]["battle_count_heatmap"]
        p3 = category_elo_results["Overall"]["bootstrap_elo_rating"]
        p4 = category_elo_results["Overall"]["average_win_rate_bar"]
        arena_df = arena_dfs["Overall"]
        default_md = make_default_md(arena_df, category_elo_results["Overall"])

    md_1 = gr.Markdown(default_md, elem_id="leaderboard_markdown")
    if leaderboard_table_file:
        data = load_leaderboard_table_csv(leaderboard_table_file)
        model_table_df = pd.DataFrame(data)

        with gr.Tabs() as tabs:
            # arena table
            arena_table_vals = get_arena_table(arena_df, model_table_df)
            with gr.Tab("Arena Elo", id=0):
                md = make_arena_leaderboard_md(arena_df)
                leaderboard_markdown = gr.Markdown(md, elem_id="leaderboard_markdown")
                with gr.Row():
                    with gr.Column(scale=2):
                        category_dropdown = gr.Dropdown(choices=list(arena_dfs.keys()), label="Category", value="Overall")
                    default_category_details = make_category_arena_leaderboard_md(arena_df, arena_df, name="Overall")
                    with gr.Column(scale=4, variant="panel"):
                        category_deets = gr.Markdown(default_category_details, elem_id="category_deets")

                elo_display_df = gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“Š 95% CI",
                        "πŸ—³οΈ Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                    datatype=[
                        "number",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                        "str",
                    ],
                    value=arena_table_vals,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
                    wrap=True,
                )

                gr.Markdown(
                    f"""Note: we take the 95% confidence interval into account when determining a model's ranking.
            A model is ranked higher only if its lower bound of model score is higher than the upper bound of the other model's score.
            See Figure 3 below for visualization of the confidence intervals. Code to recreate these tables and plots in this [notebook]({notebook_url}) and more discussions in this blog [post](https://lmsys.org/blog/2023-12-07-leaderboard/).
            """,
                    elem_id="leaderboard_markdown"
                )

                leader_component_values[:] = [default_md, p1, p2, p3, p4]

                if show_plot:
                    more_stats_md = gr.Markdown(
                        f"""## More Statistics for Chatbot Arena (Overall)""",
                        elem_id="leaderboard_header_markdown"
                    )
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 1: Fraction of Model A Wins for All Non-tied A vs. B Battles", elem_id="plot-title"
                            )
                            plot_1 = gr.Plot(p1, show_label=False, elem_id="plot-container")
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 2: Battle Count for Each Combination of Models (without Ties)", elem_id="plot-title"
                            )
                            plot_2 = gr.Plot(p2, show_label=False)
                    with gr.Row():
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 3: Confidence Intervals on Model Strength (via Bootstrapping)", elem_id="plot-title"
                            )
                            plot_3 = gr.Plot(p3, show_label=False)
                        with gr.Column():
                            gr.Markdown(
                                "#### Figure 4: Average Win Rate Against All Other Models (Assuming Uniform Sampling and No Ties)", elem_id="plot-title"
                            )
                            plot_4 = gr.Plot(p4, show_label=False)

            with gr.Tab("Full Leaderboard", id=1):
                md = make_full_leaderboard_md(elo_results)
                gr.Markdown(md, elem_id="leaderboard_markdown")
                full_table_vals = get_full_table(arena_df, model_table_df)
                gr.Dataframe(
                    headers=[
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“ˆ MT-bench",
                        "πŸ“š MMLU",
                        "Organization",
                        "License",
                    ],
                    datatype=["markdown", "number", "number", "number", "str", "str"],
                    value=full_table_vals,
                    elem_id="full_leaderboard_dataframe",
                    column_widths=[200, 100, 100, 100, 150, 150],
                    height=700,
                    wrap=True,
                )
        if not show_plot:
            gr.Markdown(
                """ ## Visit our [HF space](https://huggingface.co./spaces/lmsys/chatbot-arena-leaderboard) for more analysis!
                If you want to see more models, please help us [add them](https://github.com/lm-sys/FastChat/blob/main/docs/arena.md#how-to-add-a-new-model).
                """,
                elem_id="leaderboard_markdown",
            )
    else:
        pass

    def update_leaderboard_df(arena_table_vals):
        elo_datarame = pd.DataFrame(arena_table_vals, columns=[ "Rank", "Delta", "πŸ€– Model", "⭐ Arena Elo", "πŸ“Š 95% CI", "πŸ—³οΈ Votes", "Organization", "License", "Knowledge Cutoff"])

        # goal: color the rows based on the rank with styler
        def highlight_max(s):
            # all items in S which contain up arrow should be green, down arrow should be red, otherwise black
            return ["color: green; font-weight: bold" if "\u2191" in v else "color: red; font-weight: bold" if "\u2193" in v else "" for v in s]
            
        def highlight_rank_max(s):
            return ["color: green; font-weight: bold" if v > 0 else "color: red; font-weight: bold" if v < 0 else "" for v in s]
        
        return elo_datarame.style.apply(highlight_max, subset=["Rank"]).apply(highlight_rank_max, subset=["Delta"])

    def update_leaderboard_and_plots(category):
        arena_subset_df = arena_dfs[category]
        arena_subset_df = arena_subset_df[arena_subset_df["num_battles"] > 500]
        elo_subset_results = category_elo_results[category]
        arena_df = arena_dfs["Overall"]
        arena_values = get_arena_table(arena_df, model_table_df, arena_subset_df = arena_subset_df if category != "Overall" else None)
        if category != "Overall":
            arena_values = update_leaderboard_df(arena_values)
            arena_values = gr.Dataframe(
                    headers=[
                        "Rank",
                        "Delta",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“Š 95% CI",
                        "πŸ—³οΈ Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                    datatype=[
                        "number",
                        "number",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                        "str",
                    ],
                    value=arena_values,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[60, 70, 190, 110, 100, 90, 160, 150, 140],
                    wrap=True,
                )
        else:
            arena_values = gr.Dataframe(
                    headers=[
                        "Rank",
                        "πŸ€– Model",
                        "⭐ Arena Elo",
                        "πŸ“Š 95% CI",
                        "πŸ—³οΈ Votes",
                        "Organization",
                        "License",
                        "Knowledge Cutoff",
                    ],
                    datatype=[
                        "number",
                        "markdown",
                        "number",
                        "str",
                        "number",
                        "str",
                        "str",
                        "str",
                    ],
                    value=arena_values,
                    elem_id="arena_leaderboard_dataframe",
                    height=700,
                    column_widths=[70, 190, 110, 100, 90, 160, 150, 140],
                    wrap=True,
                )

        p1 = elo_subset_results["win_fraction_heatmap"]
        p2 = elo_subset_results["battle_count_heatmap"]
        p3 = elo_subset_results["bootstrap_elo_rating"]
        p4 = elo_subset_results["average_win_rate_bar"]
        more_stats_md = f"""## More Statistics for Chatbot Arena - {category}
        """
        leaderboard_md = make_category_arena_leaderboard_md(arena_df, arena_subset_df, name=category)
        return arena_values, p1, p2, p3, p4, more_stats_md, leaderboard_md
                
    category_dropdown.change(update_leaderboard_and_plots, inputs=[category_dropdown], outputs=[elo_display_df, plot_1, plot_2, plot_3, plot_4, more_stats_md, category_deets])

    with gr.Accordion(
        "πŸ“ Citation",
        open=True,
    ):
        citation_md = """
        ### Citation
        Please cite the following paper if you find our leaderboard or dataset helpful.
        ```
        @misc{chiang2024chatbot,
            title={Chatbot Arena: An Open Platform for Evaluating LLMs by Human Preference},
            author={Wei-Lin Chiang and Lianmin Zheng and Ying Sheng and Anastasios Nikolas Angelopoulos and Tianle Li and Dacheng Li and Hao Zhang and Banghua Zhu and Michael Jordan and Joseph E. Gonzalez and Ion Stoica},
            year={2024},
            eprint={2403.04132},
            archivePrefix={arXiv},
            primaryClass={cs.AI}
        }
        """
        gr.Markdown(citation_md, elem_id="leaderboard_markdown")
        gr.Markdown(acknowledgment_md)

    if show_plot:
        return [md_1, plot_1, plot_2, plot_3, plot_4]
    return [md_1]


block_css = """
#notice_markdown {
    font-size: 104%
}
#notice_markdown th {
    display: none;
}
#notice_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}

#category_deets {
    text-align: center;
    padding: 0px;
}

#leaderboard_markdown {
    font-size: 104%
}
#leaderboard_markdown td {
    padding-top: 6px;
    padding-bottom: 6px;
}

#leaderboard_header_markdown {
    font-size: 104%;
    text-align: center;
    display:block;
}

#leaderboard_dataframe td {
    line-height: 0.1em;
}

#plot-title {
    text-align: center;
    display:block;
}

#non-interactive-button {
  display: inline-block;
  padding: 10px 10px;
  background-color: #f7f7f7; /* Super light grey background */
  text-align: center;
  font-size: 26px; /* Larger text */
  border-radius: 0; /* Straight edges, no border radius */
  border: 0px solid #dcdcdc; /* A light grey border to match the background */
  user-select: none; /* The text inside the button is not selectable */
  pointer-events: none; /* The button is non-interactive */
}

footer {
    display:none !important
}
.sponsor-image-about img {
    margin: 0 20px;
    margin-top: 20px;
    height: 40px;
    max-height: 100%;
    width: auto;
    float: left;
}
"""

acknowledgment_md = """
### Acknowledgment
We thank [Kaggle](https://www.kaggle.com/), [MBZUAI](https://mbzuai.ac.ae/), [a16z](https://www.a16z.com/), [Together AI](https://www.together.ai/), [Anyscale](https://www.anyscale.com/), [HuggingFace](https://huggingface.co./) for their generous [sponsorship](https://lmsys.org/donations/).

<div class="sponsor-image-about">
    <img src="https://storage.googleapis.com/public-arena-asset/kaggle.png" alt="Kaggle">
    <img src="https://storage.googleapis.com/public-arena-asset/mbzuai.jpeg" alt="MBZUAI">
    <img src="https://storage.googleapis.com/public-arena-asset/a16z.jpeg" alt="a16z">
    <img src="https://storage.googleapis.com/public-arena-asset/together.png" alt="Together AI">
    <img src="https://storage.googleapis.com/public-arena-asset/anyscale.png" alt="AnyScale">
    <img src="https://storage.googleapis.com/public-arena-asset/huggingface.png" alt="HuggingFace">
</div>
"""

def build_demo(elo_results_file, leaderboard_table_file):
    text_size = gr.themes.sizes.text_lg
    theme = gr.themes.Base(text_size=text_size)
    theme.set(button_secondary_background_fill_hover="*primary_300", 
              button_secondary_background_fill_hover_dark="*primary_700")
    with gr.Blocks(
        title="Chatbot Arena Leaderboard",
        theme=theme,
        # theme = gr.themes.Base.load("theme.json"), # uncomment to use new cool theme
        css=block_css,
    ) as demo:
        leader_components = build_leaderboard_tab(
            elo_results_file, leaderboard_table_file, show_plot=True
        )
    return demo


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--share", action="store_true")
    parser.add_argument("--host", default="0.0.0.0")
    parser.add_argument("--port", type=int, default=7860)
    args = parser.parse_args()

    elo_result_files = glob.glob("elo_results_*.pkl")
    elo_result_files.sort(key=lambda x: int(x[12:-4]))
    elo_result_file = elo_result_files[-1]

    leaderboard_table_files = glob.glob("leaderboard_table_*.csv")
    leaderboard_table_files.sort(key=lambda x: int(x[18:-4]))
    leaderboard_table_file = leaderboard_table_files[-1]

    demo = build_demo(elo_result_file, leaderboard_table_file)
    demo.launch(share=args.share, server_name=args.host, server_port=args.port)