File size: 6,482 Bytes
4ffd659
 
19513c9
7e5cb25
 
 
 
4ffd659
7e5cb25
 
 
4ffd659
7e5cb25
 
 
 
 
 
 
 
 
 
 
 
 
4ffd659
 
 
 
 
 
 
7e5cb25
 
4ffd659
 
7e5cb25
 
4ffd659
19513c9
 
7e5cb25
 
 
19513c9
4ffd659
 
7e5cb25
4ffd659
 
7e5cb25
4ffd659
 
 
7e5cb25
 
 
 
4ffd659
 
 
 
 
 
7e5cb25
4ffd659
 
 
 
 
 
 
 
7e5cb25
 
4ffd659
 
 
 
 
 
 
 
 
7e5cb25
 
 
 
4ffd659
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5cb25
 
 
 
4ffd659
 
 
 
7e5cb25
4ffd659
 
 
 
7e5cb25
19513c9
7e5cb25
 
 
 
 
 
 
 
 
 
 
 
 
19513c9
 
 
 
7e5cb25
19513c9
7e5cb25
 
19513c9
7e5cb25
 
19513c9
 
 
 
 
 
 
 
 
 
 
 
7e5cb25
19513c9
 
 
 
 
 
 
 
 
7e5cb25
19513c9
7e5cb25
 
 
19513c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7e5cb25
19513c9
4ffd659
19513c9
 
7e5cb25
19513c9
 
7e5cb25
4ffd659
7e5cb25
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import sqlite3
import time
from termcolor import colored
import psycopg2
from queriers import together, cohere, openai_func, openrouter, ai21, alephalpha, hugchat_func, anthropic_func
import psycopg2.extras
import psycopg2.pool 

import os
from dotenv import load_dotenv
load_dotenv()

# Connect to database
PG_URI = os.environ.get("POSTGRES_URL")


# Create a connection pool with a minimum of 2 connections and 
#a maximum of 3 connections 
pool = psycopg2.pool.SimpleConnectionPool(2, 10, dsn=PG_URI)

#conn = psycopg2.connect(PG_URI)

conn = pool.getconn()

cursor = conn.cursor(cursor_factory=psycopg2.extras.DictCursor)

def remove_end(s, suffix):
    if s.endswith(suffix):
        return s[:-len(suffix)]
    return s

# Fetch models
cursor.execute("SELECT * FROM models")
models = cursor.fetchall()

# Fetch prompts
cursor.execute("SELECT * FROM prompts WHERE selected = true")
prompts = cursor.fetchall()


def get_results():
    cursor.execute("SELECT * FROM results")
    results = cursor.fetchall()
    return results

def insert_result(modelId, promptId, result, duration, rate):
    cursor.execute(
        "INSERT INTO results (model, prompt, result, duration, rate) VALUES (%s, %s, %s, %s, %s)",
        (modelId, promptId, result, duration, rate)
    )
    conn.commit()
    pass

def check_if_results_exist(modelId, promptId):
    cursor.execute(
        "SELECT * FROM results WHERE model = %s AND prompt = %s LIMIT 1", (modelId, promptId)
    )
    results = cursor.fetchall()
    return len(results) > 0

def ask_prompt(prompt, model):
    exists = check_if_results_exist(model["id"], prompt["id"])

    if exists:
        print(f"Skipping {model['name']}, already got benchmark")
        return

    mapping = {
        "together": together,
        "cohere": cohere,   # Add these functions to the mapping once they are translated
        "openai": openai_func,
        "openrouter": openrouter,
        "ai21": ai21,
        "hugchat": hugchat_func,
        "anthropic": anthropic_func,
        # "alephalpha": alephalpha # TODO: get a working API key
    }

    querier = mapping.get(model["api"])

    if not querier:
        print(f"No querier for {model['api']}")
        return

    print(colored("------------------------------------", 'white'))
    print(colored(f"Querying {model['name']}", 'white'))
    print(colored(f"Prompt: {prompt['text']}", 'white'))
    print(colored("------------------------------------", 'white'))

    start_time = time.time()

    try:
        response_text = querier(model, prompt)

        # Remove newlines and trailing spaces + stop sequence
        cleaned = response_text.strip()
        if prompt["stop"]:
            cleaned = remove_end(cleaned, prompt["stop"])

        end_time = time.time()

        duration = end_time - start_time
        chars_per_second = round(len(response_text) / duration, 2)

        print(colored("------------------------------------", 'green'))
        print(colored(f"Result: {cleaned}", 'green'))
        print(colored(f"Took {duration*1000} ms ({chars_per_second} chars/s)", 'green'))
        print(colored("------------------------------------", 'green'))

        insert_result(model["id"], prompt["id"], cleaned, duration*1000, chars_per_second)

    except Exception as e:
        print(colored(f"Error querying {model['name']} ", 'red'), e)


total_benchmarks = len(models) * len(prompts)

print(colored(f"Running {total_benchmarks} benchmarks", 'blue'))

# Run prompts
for model in models:

    if model["type"] != "chat":
        # Skip non-chat models for now 
        continue

    for prompt in prompts:
        # if prompt["type"] != "code" and model["type"] == "code":
            # print("Skipping non-code benchmark for code model")
            # continue

        ask_prompt(prompt, model)

# Calculate scores
results = get_results()

#@agent(name="RateResult")
def rate_result(result):
    cursor.execute(
        "SELECT * FROM rubrics WHERE prompt = %s",
        (result["prompt"],)
    )
    rubrics = cursor.fetchall()

    has_rubrics = len(rubrics) > 0

    if not has_rubrics:
        return

    print(colored('---------------------------', 'white'))
    print(colored('----------RATING-----------', 'white'))
    print(colored('---------------------------', 'white'))
    print(colored(result["result"], 'cyan'))
    print(colored('---------------------------', 'white'))
    
    score = 0 

    for rubric in rubrics:

        print('Rubric: '+colored(rubric["grading"], 'magenta'))
        
        if result["result"].strip() == "":
            score = 0
        else:
            grading_text = (
                f'You help me grade the answer of chatbots by verifying that they match this condition: the answer {rubric["grading"]}. Note: the answer might be imcomplete, in which case do your best to assess based on what the full result would be. Your rating needs to be very strict: if I ask that the answer is *exactly* some string and it contains more than that, then it\'s invalid.\n\n'
                f'\n\n--START OF THE ANSWER--\n{result["result"]}\n--END OF THE ANSWER--\n\n'
                # f'Take a deep breath and explain step by step how you come to the conclusion.'
                # f'Finally, reply on the last line with YES if the following answer matches this condition (otherwies reply NO).'
                f'Reply with YES if the text between START and END matches exactly the above condition (otherwise reply NO).'
            )

            # get gpt-4 model
            gpt4 = next((item for item in models if item['api_id'] == 'gpt-4'), None)
            
            prompt = { }

            response_text = openai_func(gpt4, {"text": grading_text})

            print(colored(f"-> {response_text}", 'yellow'))

            last_line = response_text.splitlines()[-1]

            # If it includes a yes, then it's valid
            if "YES" in last_line:
                print(colored(f'Valid! + {rubric["points"]} points', 'green'))
                score = rubric["points"] if score is None else score + rubric["points"]

    print('Final score: '+colored(score, 'cyan'))
    
    return score

for result in results:
    if result["score"] is None:
        score = rate_result(result)

        if score is not None:
            cursor.execute(
                "UPDATE results SET score = %s WHERE id = %s",
                (score, result["id"])
            )
            conn.commit()

cursor.close()
conn.close()