Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import gradio as gr
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
from huggingface_hub import snapshot_download
|
7 |
-
from decimal import Decimal
|
8 |
|
9 |
from src.about import (
|
10 |
CITATION_BUTTON_LABEL,
|
@@ -54,13 +53,7 @@ except Exception:
|
|
54 |
restart_space()
|
55 |
|
56 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
57 |
-
print(LEADERBOARD_DF.head())
|
58 |
original_df = LEADERBOARD_DF
|
59 |
-
print("Initial LEADERBOARD_DF:")
|
60 |
-
print(LEADERBOARD_DF.head())
|
61 |
-
print(f"LEADERBOARD_DF shape: {LEADERBOARD_DF.shape}")
|
62 |
-
print("LEADERBOARD_DF columns:")
|
63 |
-
print(LEADERBOARD_DF.columns.tolist())
|
64 |
leaderboard_df = original_df.copy()
|
65 |
(
|
66 |
finished_eval_queue_df,
|
@@ -83,10 +76,10 @@ def update_table(
|
|
83 |
show_flagged: bool,
|
84 |
query: str,
|
85 |
):
|
86 |
-
|
87 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
88 |
-
|
89 |
filtered_df = filter_queries(query, filtered_df)
|
|
|
|
|
90 |
|
91 |
df = select_columns(filtered_df, columns)
|
92 |
return df
|
@@ -136,75 +129,40 @@ def filter_queries(query: str, filtered_df: pd.DataFrame):
|
|
136 |
def filter_models(
|
137 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
138 |
) -> pd.DataFrame:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
filtered_df = df.copy() # Create a copy to avoid modifying the original dataframe
|
145 |
|
146 |
-
#
|
147 |
-
#
|
148 |
-
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.still_on_hub.name] == True]
|
149 |
|
150 |
-
|
|
|
151 |
|
152 |
-
# Type filter
|
153 |
type_emoji = [t[0] for t in type_query]
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
|
|
160 |
|
161 |
-
print(f"After type filter: {filtered_df.shape}")
|
162 |
-
|
163 |
-
# Precision filter
|
164 |
-
precision_query = precision_query + ['Unknown', '?']
|
165 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.precision.name].isin(precision_query)]
|
166 |
-
print(f"After precision filter: {filtered_df.shape}")
|
167 |
-
|
168 |
-
# Add Special Tokens filter
|
169 |
-
add_special_tokens_query = add_special_tokens_query + ["Unknown"]
|
170 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
171 |
-
print(f"After add_special_tokens filter: {filtered_df.shape}")
|
172 |
-
|
173 |
-
# Num Few Shots filter
|
174 |
-
num_few_shots_query = num_few_shots_query + ["Unknown"]
|
175 |
-
filtered_df = filtered_df[filtered_df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
176 |
-
print(f"After num_few_shots filter: {filtered_df.shape}")
|
177 |
|
178 |
-
# Size filter
|
179 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
180 |
-
params_column = pd.to_numeric(
|
181 |
-
mask = params_column.apply(lambda x:
|
182 |
-
filtered_df = filtered_df[mask]
|
183 |
-
print(f"After size filter: {filtered_df.shape}")
|
184 |
-
|
185 |
-
if filtered_df.empty:
|
186 |
-
print("Warning: Filtered dataframe is empty!")
|
187 |
-
return pd.DataFrame(columns=df.columns) # Return an empty dataframe with the same columns
|
188 |
-
|
189 |
-
print("Filtered dataframe head:")
|
190 |
-
print(filtered_df.head())
|
191 |
-
print("Column names:")
|
192 |
-
print(filtered_df.columns.tolist())
|
193 |
-
print("Column data types:")
|
194 |
-
print(filtered_df.dtypes)
|
195 |
-
print("Final filtered dataframe sample:")
|
196 |
-
print(filtered_df.head().to_dict('records'))
|
197 |
-
|
198 |
-
print("Filtered DataFrame sample:")
|
199 |
-
print(filtered_df.head().to_dict('records'))
|
200 |
-
|
201 |
-
filtered_df = filtered_df.astype(str)
|
202 |
return filtered_df
|
203 |
|
204 |
-
|
205 |
-
|
|
|
206 |
|
207 |
-
|
|
|
208 |
|
209 |
demo = gr.Blocks(css=custom_css)
|
210 |
with demo:
|
@@ -285,48 +243,15 @@ with demo:
|
|
285 |
elem_id="filter-columns-num-few-shots",
|
286 |
)
|
287 |
|
288 |
-
# leaderboard_table = gr.components.Dataframe(
|
289 |
-
# value=leaderboard_df[
|
290 |
-
# [c.name for c in fields(AutoEvalColumn) if c.never_hidden]
|
291 |
-
# + shown_columns.value
|
292 |
-
# # + [AutoEvalColumn.dummy.name]
|
293 |
-
# ],
|
294 |
-
# headers=[c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value,
|
295 |
-
# datatype=TYPES,
|
296 |
-
# elem_id="leaderboard-table",
|
297 |
-
# interactive=False,
|
298 |
-
# visible=True,
|
299 |
-
# #column_widths=["2%", "33%"]
|
300 |
-
# )
|
301 |
-
filtered_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
302 |
-
print("After filter_models:")
|
303 |
-
print(f"filtered_df shape: {filtered_df.shape}")
|
304 |
-
print("filtered_df columns:")
|
305 |
-
print(filtered_df.columns.tolist())
|
306 |
-
|
307 |
-
initial_data = [convert_decimal_to_str(item) for item in filtered_df.to_dict('records')]
|
308 |
-
headers = filtered_df.columns.tolist()
|
309 |
-
print("Filtered DataFrame contents:")
|
310 |
-
print(filtered_df.head().to_dict('records'))
|
311 |
-
print("Filtered DataFrame columns:")
|
312 |
-
print(filtered_df.columns.tolist())
|
313 |
-
filtered_df_without_T = filtered_df.drop('T', axis=1)
|
314 |
leaderboard_table = gr.components.Dataframe(
|
315 |
-
value=
|
316 |
-
headers=
|
317 |
-
datatype={col: "str" for col in
|
318 |
-
row_count=(len(filtered_df_without_T), "dynamic"),
|
319 |
-
col_count=(len(filtered_df_without_T.columns), "fixed"),
|
320 |
-
wrap=True,
|
321 |
elem_id="leaderboard-table",
|
322 |
interactive=False,
|
323 |
visible=True,
|
324 |
)
|
325 |
-
print(
|
326 |
-
print(initial_data[:5] if initial_data else "Empty")
|
327 |
-
print("Headers:")
|
328 |
-
print(headers)
|
329 |
-
print("After Dataframe initialization")
|
330 |
|
331 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
332 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|
|
|
4 |
import pandas as pd
|
5 |
from apscheduler.schedulers.background import BackgroundScheduler
|
6 |
from huggingface_hub import snapshot_download
|
|
|
7 |
|
8 |
from src.about import (
|
9 |
CITATION_BUTTON_LABEL,
|
|
|
53 |
restart_space()
|
54 |
|
55 |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS)
|
|
|
56 |
original_df = LEADERBOARD_DF
|
|
|
|
|
|
|
|
|
|
|
57 |
leaderboard_df = original_df.copy()
|
58 |
(
|
59 |
finished_eval_queue_df,
|
|
|
76 |
show_flagged: bool,
|
77 |
query: str,
|
78 |
):
|
|
|
79 |
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, add_special_tokens_query, num_few_shots_query, show_deleted, show_merges, show_flagged)
|
|
|
80 |
filtered_df = filter_queries(query, filtered_df)
|
81 |
+
print(f"Filter applied: query={query}, columns={columns}, type_query={type_query}, precision_query={precision_query}")
|
82 |
+
print(filtered_df.head()) # フィルタ後のデータを確認
|
83 |
|
84 |
df = select_columns(filtered_df, columns)
|
85 |
return df
|
|
|
129 |
def filter_models(
|
130 |
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, add_special_tokens_query: list, num_few_shots_query: list, show_deleted: bool, show_merges: bool, show_flagged: bool
|
131 |
) -> pd.DataFrame:
|
132 |
+
# Show all models
|
133 |
+
if show_deleted:
|
134 |
+
filtered_df = df
|
135 |
+
else: # Show only still on the hub models
|
136 |
+
filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
|
|
|
137 |
|
138 |
+
#if not show_merges:
|
139 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.merged.name] == False]
|
|
|
140 |
|
141 |
+
#if not show_flagged:
|
142 |
+
# filtered_df = filtered_df[filtered_df[AutoEvalColumn.flagged.name] == False]
|
143 |
|
|
|
144 |
type_emoji = [t[0] for t in type_query]
|
145 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
|
146 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
|
147 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.add_special_tokens.name].isin(add_special_tokens_query)]
|
148 |
+
filtered_df = filtered_df.loc[df[AutoEvalColumn.num_few_shots.name].isin(num_few_shots_query)]
|
149 |
+
print("Filtered DataFrame shape:", filtered_df.shape)
|
150 |
+
print("Filtered DataFrame columns:", filtered_df.columns.tolist())
|
151 |
+
print("Filtered DataFrame sample:", filtered_df.head().to_dict('records'))
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
|
|
|
154 |
numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
|
155 |
+
params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
|
156 |
+
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
|
157 |
+
filtered_df = filtered_df.loc[mask]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
158 |
return filtered_df
|
159 |
|
160 |
+
filtered_df = filter_models(leaderboard_df, [t.to_str(" : ") for t in ModelType], list(NUMERIC_INTERVALS.keys()), [i.value.name for i in Precision], [i.value.name for i in AddSpecialTokens], [i.value.name for i in NumFewShots], False, False, False)
|
161 |
+
display_columns = [c.name for c in fields(AutoEvalColumn) if c.never_hidden] + shown_columns.value
|
162 |
+
display_data = filtered_df[display_columns].to_dict('records')
|
163 |
|
164 |
+
print("Display columns:", display_columns)
|
165 |
+
print("Display data sample:", display_data[:1])
|
166 |
|
167 |
demo = gr.Blocks(css=custom_css)
|
168 |
with demo:
|
|
|
243 |
elem_id="filter-columns-num-few-shots",
|
244 |
)
|
245 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
246 |
leaderboard_table = gr.components.Dataframe(
|
247 |
+
value=display_data,
|
248 |
+
headers=display_columns,
|
249 |
+
datatype={col: str(TYPES.get(col, "str")) for col in display_columns},
|
|
|
|
|
|
|
250 |
elem_id="leaderboard-table",
|
251 |
interactive=False,
|
252 |
visible=True,
|
253 |
)
|
254 |
+
print(leaderboard_df.head()) # リーダーボードテーブルに渡される前のデータを確認
|
|
|
|
|
|
|
|
|
255 |
|
256 |
# Dummy leaderboard for handling the case when the user uses backspace key
|
257 |
hidden_leaderboard_table_for_search = gr.components.Dataframe(
|