File size: 4,319 Bytes
34a9c77
 
 
 
 
 
 
 
 
7f97e19
 
 
 
 
 
 
 
 
 
2f58e8d
7f97e19
 
 
 
 
 
 
 
7365c87
7f97e19
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
---
title: README
emoji: 🌍
colorFrom: red
colorTo: gray
sdk: static
pinned: false
---

# LLaMA-MoE: Building Mixture-of-Experts from LLaMA with Continual Pre-training

πŸ“’ **A SMALLER AFFORDABLE MoE MODEL FOR EVERYONE!!**


LLaMA-MoE is a series of open-sourced Mixture-of-Expert (MoE) models based on [LLaMA](https://github.com/facebookresearch/llama) and [SlimPajama](https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama).
We build LLaMA-MoE with the following two steps:
1. Partition LLaMA's FFNs into sparse experts and insert top-K gate for each layer of experts.
2. Continually pre-train the initialized MoE model with an optimized data sampling weights from [Sheared LLaMA](https://arxiv.org/abs/2310.06694) and filtered datasets from [SlimPajama](https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama).

The number of activated model parameters is only 3.0~3.5B, which is friendly for deployment and research usage. Please refer to our [technical report](https://github.com/pjlab-sys4nlp/llama-moe/blob/main/docs/LLaMA_MoE.pdf) for more details.


| Model                     | \#Activated Experts | \#Experts | \#Activated Params |                                   Links                                   |
| :------------------------ | :-----------------: | :-------: | :----------------: | :-----------------------------------------------------------------------: |
| **LLaMA-MoE-3.0B**        |          2          |    16     |        3.0B        | [[πŸ€— HF Weights]](https://huggingface.co./llama-moe/LLaMA-MoE-v1-3_0B-2_16) |
| **LLaMA-MoE-3.5B (4/16)** |          4          |    16     |        3.5B        | [[πŸ€— HF Weights]](https://huggingface.co./llama-moe/LLaMA-MoE-v1-3_5B-4_16) |
| **LLaMA-MoE-3.5B (2/8)**  |          2          |     8     |        3.5B        | [[πŸ€— HF Weights]](https://huggingface.co./llama-moe/LLaMA-MoE-v1-3_5B-2_8)  |

| Model                                                                                 | Average  |   SciQ   |   PIQA   | WinoGrande |  ARC-e   | ARC-c (25) | HellaSwag (10) |  LogiQA  | BoolQ (32) | LAMBADA  | NQ (32)  | MMLU (5)  |
| :------------------------------------------------------------------------------------ | :------: | :------: | :------: | :--------: | :------: | :--------: | :------------: | :------: | :--------: | :------: | :------: | :-------: |
| [OPT-2.7B](https://huggingface.co./facebook/opt-2.7b)                                  |   50.3   |   78.9   |   74.8   |    60.8    |   54.4   |    34.0    |      61.4      |   25.8   |    63.3    |   63.6   |   10.7   |   25.8    |
| [Pythia-2.8B](https://huggingface.co./EleutherAI/pythia-2.8b)                          |   51.5   |   83.2   |   73.6   |    59.6    |   58.8   |    36.7    |      60.7      |   28.1   |    65.9    |   64.6   |   8.7    |   26.8    |
| [INCITE-BASE-3B](https://huggingface.co./togethercomputer/RedPajama-INCITE-Base-3B-v1) |   53.7   |   85.6   |   73.9   |    63.5    |   61.7   |    40.3    |      64.7      |   27.5   |    65.8    |   65.4   |   15.2   |   27.2    |
| [Open-LLaMA-3B-v2](https://huggingface.co./openlm-research/open_llama_3b_v2)           |   55.6   |   88.0   |   77.9   |    63.1    |   63.3   |    40.1    |      71.4      |   28.1   |    69.2    |   67.4   |   16.0   |   26.8    |
| [Sheared-LLaMA-2.7B](https://huggingface.co./princeton-nlp/Sheared-LLaMA-2.7B)         |   56.4   |   87.5   |   76.9   |    65.0    |   63.3   |    41.6    |      71.0      |   28.3   |    73.6    |   68.3   |   17.6   | **27.3**  |
| **LLaMA-MoE-3.0B**                                                                    |   55.5   |   84.2   |   77.5   |    63.6    |   60.2   |    40.9    |      70.8      | **30.6** |    71.9    |   66.6   |   17.0   |   26.8    |
| **LLaMA-MoE-3.5B (4/16)**                                                             | **57.7** |   87.6   | **77.9** |    65.5    | **65.6** |  **44.2**  |    **73.3**    |   29.7   |  **75.0**  | **69.5** | **20.3** |   26.8    |
| **LLaMA-MoE-3.5B (2/8)**                                                              |   57.6   | **88.4** |   77.6   |  **66.7**  |   65.3   |    43.1    |    **73.3**    |   29.6   |    73.9    |   69.4   |   19.8   |   27.0    |