Spaces:
Runtime error
Runtime error
lkeab
commited on
Commit
•
c6c496f
1
Parent(s):
bb15987
update configs
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- configs/Base-RCNN-C4.yaml +0 -0
- configs/Base-RCNN-DilatedC5.yaml +0 -0
- configs/Base-RCNN-FPN-4gpu.yaml +0 -44
- configs/Base-RCNN-FPN.yaml +2 -1
- configs/Base-RetinaNet.yaml +0 -0
- configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml +0 -17
- configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml +0 -6
- configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml +0 -6
- configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml +0 -6
- configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml +0 -9
- configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml +0 -13
- configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml +0 -8
- configs/COCO-Detection/retinanet_R_50_FPN_1x.py +0 -9
- configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml +0 -5
- configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml +0 -8
- configs/COCO-Detection/rpn_R_50_C4_1x.yaml +0 -10
- configs/COCO-Detection/rpn_R_50_FPN_1x.yaml +0 -9
- configs/COCO-InstanceSegmentation/.mask_rcnn_R_50_FPN_1x_4gpu.yaml.swp +0 -0
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_lvis.yaml +0 -12
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py +0 -7
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml +0 -6
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml +0 -6
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py +0 -7
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu.yaml +0 -6
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu_transfiner.yaml +0 -6
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml +0 -12
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner.yaml +0 -9
- configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_lvis.yaml +0 -12
- configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml +0 -13
- configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x_transfiner.yaml +0 -13
- configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py +0 -34
- configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py +0 -35
- configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml +0 -15
- configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml +0 -8
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py +0 -7
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml +0 -5
- configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml +0 -8
- configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml +0 -12
- configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml +0 -11
- configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml +0 -8
configs/Base-RCNN-C4.yaml
CHANGED
File without changes
|
configs/Base-RCNN-DilatedC5.yaml
CHANGED
File without changes
|
configs/Base-RCNN-FPN-4gpu.yaml
DELETED
@@ -1,44 +0,0 @@
|
|
1 |
-
MODEL:
|
2 |
-
META_ARCHITECTURE: "GeneralizedRCNN"
|
3 |
-
BACKBONE:
|
4 |
-
NAME: "build_resnet_fpn_backbone"
|
5 |
-
RESNETS:
|
6 |
-
OUT_FEATURES: ["res2", "res3", "res4", "res5"]
|
7 |
-
FPN:
|
8 |
-
IN_FEATURES: ["res2", "res3", "res4", "res5"]
|
9 |
-
ANCHOR_GENERATOR:
|
10 |
-
SIZES: [[32], [64], [128], [256], [512]] # One size for each in feature map
|
11 |
-
ASPECT_RATIOS: [[0.5, 1.0, 2.0]] # Three aspect ratios (same for all in feature maps)
|
12 |
-
RPN:
|
13 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5", "p6"]
|
14 |
-
PRE_NMS_TOPK_TRAIN: 2000 # Per FPN level
|
15 |
-
PRE_NMS_TOPK_TEST: 1000 # Per FPN level
|
16 |
-
# Detectron1 uses 2000 proposals per-batch,
|
17 |
-
# (See "modeling/rpn/rpn_outputs.py" for details of this legacy issue)
|
18 |
-
# which is approximately 1000 proposals per-image since the default batch size for FPN is 2.
|
19 |
-
POST_NMS_TOPK_TRAIN: 1000
|
20 |
-
POST_NMS_TOPK_TEST: 1000
|
21 |
-
ROI_HEADS:
|
22 |
-
NAME: "StandardROIHeads"
|
23 |
-
IN_FEATURES: ["p2", "p3", "p4", "p5"]
|
24 |
-
ROI_BOX_HEAD:
|
25 |
-
NAME: "FastRCNNConvFCHead"
|
26 |
-
NUM_FC: 2
|
27 |
-
POOLER_RESOLUTION: 7
|
28 |
-
ROI_MASK_HEAD:
|
29 |
-
NAME: "MaskRCNNConvUpsampleHead"
|
30 |
-
NUM_CONV: 4
|
31 |
-
POOLER_RESOLUTION: 14
|
32 |
-
DATASETS:
|
33 |
-
TRAIN: ("coco_2017_train",)
|
34 |
-
#TEST: ("coco_2017_val",)
|
35 |
-
#TEST: ("lvis_v0.5_val_cocofied",)
|
36 |
-
TEST: ("coco_2017_test-dev",)
|
37 |
-
SOLVER:
|
38 |
-
IMS_PER_BATCH: 16 #8 #16
|
39 |
-
BASE_LR: 0.02 # 0.02
|
40 |
-
STEPS: (60000, 80000)
|
41 |
-
MAX_ITER: 90000
|
42 |
-
INPUT:
|
43 |
-
MIN_SIZE_TRAIN: (640, 672, 704, 736, 768, 800)
|
44 |
-
VERSION: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/Base-RCNN-FPN.yaml
CHANGED
@@ -31,7 +31,8 @@ MODEL:
|
|
31 |
POOLER_RESOLUTION: 14
|
32 |
DATASETS:
|
33 |
TRAIN: ("coco_2017_train",)
|
34 |
-
TEST: ("coco_2017_val",)
|
|
|
35 |
SOLVER:
|
36 |
IMS_PER_BATCH: 16 #16
|
37 |
BASE_LR: 0.02
|
|
|
31 |
POOLER_RESOLUTION: 14
|
32 |
DATASETS:
|
33 |
TRAIN: ("coco_2017_train",)
|
34 |
+
#TEST: ("coco_2017_val",)
|
35 |
+
TEST: ("coco_2017_test-dev",)
|
36 |
SOLVER:
|
37 |
IMS_PER_BATCH: 16 #16
|
38 |
BASE_LR: 0.02
|
configs/Base-RetinaNet.yaml
CHANGED
File without changes
|
configs/COCO-Detection/fast_rcnn_R_50_FPN_1x.yaml
DELETED
@@ -1,17 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
LOAD_PROPOSALS: True
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
PROPOSAL_GENERATOR:
|
9 |
-
NAME: "PrecomputedProposals"
|
10 |
-
DATASETS:
|
11 |
-
TRAIN: ("coco_2017_train",)
|
12 |
-
PROPOSAL_FILES_TRAIN: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_train_box_proposals_21bc3a.pkl", )
|
13 |
-
TEST: ("coco_2017_val",)
|
14 |
-
PROPOSAL_FILES_TEST: ("detectron2://COCO-Detection/rpn_R_50_FPN_1x/137258492/coco_2017_val_box_proposals_ee0dad.pkl", )
|
15 |
-
DATALOADER:
|
16 |
-
# proposals are part of the dataset_dicts, and take a lot of RAM
|
17 |
-
NUM_WORKERS: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_101_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_101_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_101_FPN_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_C4_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: False
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
MASK_ON: False
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
-
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
-
RESNETS:
|
7 |
-
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
-
NUM_GROUPS: 32
|
9 |
-
WIDTH_PER_GROUP: 8
|
10 |
-
DEPTH: 101
|
11 |
-
SOLVER:
|
12 |
-
STEPS: (210000, 250000)
|
13 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/retinanet_R_101_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.py
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
from ..common.optim import SGD as optimizer
|
2 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
-
from ..common.data.coco import dataloader
|
4 |
-
from ..common.models.retinanet import model
|
5 |
-
from ..common.train import train
|
6 |
-
|
7 |
-
dataloader.train.mapper.use_instance_mask = False
|
8 |
-
model.backbone.bottom_up.freeze_at = 2
|
9 |
-
optimizer.lr = 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/retinanet_R_50_FPN_1x.yaml
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/retinanet_R_50_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RetinaNet.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/rpn_R_50_C4_1x.yaml
DELETED
@@ -1,10 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
-
MASK_ON: False
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
RPN:
|
9 |
-
PRE_NMS_TOPK_TEST: 12000
|
10 |
-
POST_NMS_TOPK_TEST: 2000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Detection/rpn_R_50_FPN_1x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "ProposalNetwork"
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
5 |
-
MASK_ON: False
|
6 |
-
RESNETS:
|
7 |
-
DEPTH: 50
|
8 |
-
RPN:
|
9 |
-
POST_NMS_TOPK_TEST: 2000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/.mask_rcnn_R_50_FPN_1x_4gpu.yaml.swp
DELETED
Binary file (12.3 kB)
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "./init_weights/model_final_a3ec72.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_101_FPN_3x_4gpu_transfiner_lvis.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "./init_weights/model_final_a3ec72.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 101
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
10 |
-
DATASETS:
|
11 |
-
TEST: ("lvis_v0.5_val_cocofied",)
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from ..common.train import train
|
2 |
-
from ..common.optim import SGD as optimizer
|
3 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
4 |
-
from ..common.data.coco import dataloader
|
5 |
-
from ..common.models.mask_rcnn_c4 import model
|
6 |
-
|
7 |
-
model.backbone.freeze_at = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_C4_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-C4.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_1x.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_DC5_3x.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-DilatedC5.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from ..common.optim import SGD as optimizer
|
2 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
-
from ..common.data.coco import dataloader
|
4 |
-
from ..common.models.mask_rcnn_fpn import model
|
5 |
-
from ..common.train import train
|
6 |
-
|
7 |
-
model.backbone.bottom_up.freeze_at = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_4gpu_transfiner.yaml
DELETED
@@ -1,6 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "./init_weights/model_final_a54504.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_1x_giou.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
RPN:
|
8 |
-
BBOX_REG_LOSS_TYPE: "giou"
|
9 |
-
BBOX_REG_LOSS_WEIGHT: 2.0
|
10 |
-
ROI_BOX_HEAD:
|
11 |
-
BBOX_REG_LOSS_TYPE: "giou"
|
12 |
-
BBOX_REG_LOSS_WEIGHT: 10.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner.yaml
DELETED
@@ -1,9 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "./init_weights/model_final_f10217.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x_4gpu_transfiner_lvis.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "./init_weights/model_final_f10217.pkl"
|
4 |
-
MASK_ON: True
|
5 |
-
RESNETS:
|
6 |
-
DEPTH: 50
|
7 |
-
SOLVER:
|
8 |
-
STEPS: (210000, 250000)
|
9 |
-
MAX_ITER: 270000
|
10 |
-
DATASETS:
|
11 |
-
TEST: ("lvis_v0.5_val_cocofied",)
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
MASK_ON: True
|
4 |
-
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
5 |
-
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
-
RESNETS:
|
7 |
-
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
-
NUM_GROUPS: 32
|
9 |
-
WIDTH_PER_GROUP: 8
|
10 |
-
DEPTH: 101
|
11 |
-
SOLVER:
|
12 |
-
STEPS: (210000, 250000)
|
13 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x_transfiner.yaml
DELETED
@@ -1,13 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN-4gpu.yaml"
|
2 |
-
MODEL:
|
3 |
-
MASK_ON: True
|
4 |
-
WEIGHTS: "./init_weights/model_final_x101.pkl"
|
5 |
-
PIXEL_STD: [57.375, 57.120, 58.395]
|
6 |
-
RESNETS:
|
7 |
-
STRIDE_IN_1X1: False # this is a C2 model
|
8 |
-
NUM_GROUPS: 32
|
9 |
-
WIDTH_PER_GROUP: 8
|
10 |
-
DEPTH: 101
|
11 |
-
SOLVER:
|
12 |
-
STEPS: (210000, 250000)
|
13 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnetx_4gf_dds_fpn_1x.py
DELETED
@@ -1,34 +0,0 @@
|
|
1 |
-
from ..common.optim import SGD as optimizer
|
2 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
-
from ..common.data.coco import dataloader
|
4 |
-
from ..common.models.mask_rcnn_fpn import model
|
5 |
-
from ..common.train import train
|
6 |
-
|
7 |
-
from detectron2.config import LazyCall as L
|
8 |
-
from detectron2.modeling.backbone import RegNet
|
9 |
-
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
-
|
11 |
-
|
12 |
-
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
|
13 |
-
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
|
14 |
-
model.backbone.bottom_up = L(RegNet)(
|
15 |
-
stem_class=SimpleStem,
|
16 |
-
stem_width=32,
|
17 |
-
block_class=ResBottleneckBlock,
|
18 |
-
depth=23,
|
19 |
-
w_a=38.65,
|
20 |
-
w_0=96,
|
21 |
-
w_m=2.43,
|
22 |
-
group_width=40,
|
23 |
-
freeze_at=2,
|
24 |
-
norm="FrozenBN",
|
25 |
-
out_features=["s1", "s2", "s3", "s4"],
|
26 |
-
)
|
27 |
-
model.pixel_std = [57.375, 57.120, 58.395]
|
28 |
-
|
29 |
-
optimizer.weight_decay = 5e-5
|
30 |
-
train.init_checkpoint = (
|
31 |
-
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
|
32 |
-
)
|
33 |
-
# RegNets benefit from enabling cudnn benchmark mode
|
34 |
-
train.cudnn_benchmark = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-InstanceSegmentation/mask_rcnn_regnety_4gf_dds_fpn_1x.py
DELETED
@@ -1,35 +0,0 @@
|
|
1 |
-
from ..common.optim import SGD as optimizer
|
2 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
-
from ..common.data.coco import dataloader
|
4 |
-
from ..common.models.mask_rcnn_fpn import model
|
5 |
-
from ..common.train import train
|
6 |
-
|
7 |
-
from detectron2.config import LazyCall as L
|
8 |
-
from detectron2.modeling.backbone import RegNet
|
9 |
-
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
|
10 |
-
|
11 |
-
|
12 |
-
# Replace default ResNet with RegNetY-4GF from the DDS paper. Config source:
|
13 |
-
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnety/RegNetY-4.0GF_dds_8gpu.yaml#L4-L10 # noqa
|
14 |
-
model.backbone.bottom_up = L(RegNet)(
|
15 |
-
stem_class=SimpleStem,
|
16 |
-
stem_width=32,
|
17 |
-
block_class=ResBottleneckBlock,
|
18 |
-
depth=22,
|
19 |
-
w_a=31.41,
|
20 |
-
w_0=96,
|
21 |
-
w_m=2.24,
|
22 |
-
group_width=64,
|
23 |
-
se_ratio=0.25,
|
24 |
-
freeze_at=2,
|
25 |
-
norm="FrozenBN",
|
26 |
-
out_features=["s1", "s2", "s3", "s4"],
|
27 |
-
)
|
28 |
-
model.pixel_std = [57.375, 57.120, 58.395]
|
29 |
-
|
30 |
-
optimizer.weight_decay = 5e-5
|
31 |
-
train.init_checkpoint = (
|
32 |
-
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906838/RegNetY-4.0GF_dds_8gpu.pyth"
|
33 |
-
)
|
34 |
-
# RegNets benefit from enabling cudnn benchmark mode
|
35 |
-
train.cudnn_benchmark = True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/Base-Keypoint-RCNN-FPN.yaml
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
KEYPOINT_ON: True
|
4 |
-
ROI_HEADS:
|
5 |
-
NUM_CLASSES: 1
|
6 |
-
ROI_BOX_HEAD:
|
7 |
-
SMOOTH_L1_BETA: 0.5 # Keypoint AP degrades (though box AP improves) when using plain L1 loss
|
8 |
-
RPN:
|
9 |
-
# Detectron1 uses 2000 proposals per-batch, but this option is per-image in detectron2.
|
10 |
-
# 1000 proposals per-image is found to hurt box AP.
|
11 |
-
# Therefore we increase it to 1500 per-image.
|
12 |
-
POST_NMS_TOPK_TRAIN: 1500
|
13 |
-
DATASETS:
|
14 |
-
TRAIN: ("keypoints_coco_2017_train",)
|
15 |
-
TEST: ("keypoints_coco_2017_val",)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/keypoint_rcnn_R_101_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
from ..common.optim import SGD as optimizer
|
2 |
-
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
|
3 |
-
from ..common.data.coco_keypoint import dataloader
|
4 |
-
from ..common.models.keypoint_rcnn_fpn import model
|
5 |
-
from ..common.train import train
|
6 |
-
|
7 |
-
model.backbone.bottom_up.freeze_at = 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_1x.yaml
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/keypoint_rcnn_R_50_FPN_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-50.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 50
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-Keypoints/keypoint_rcnn_X_101_32x8d_FPN_3x.yaml
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
_BASE_: "Base-Keypoint-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/FAIR/X-101-32x8d.pkl"
|
4 |
-
PIXEL_STD: [57.375, 57.120, 58.395]
|
5 |
-
RESNETS:
|
6 |
-
STRIDE_IN_1X1: False # this is a C2 model
|
7 |
-
NUM_GROUPS: 32
|
8 |
-
WIDTH_PER_GROUP: 8
|
9 |
-
DEPTH: 101
|
10 |
-
SOLVER:
|
11 |
-
STEPS: (210000, 250000)
|
12 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-PanopticSegmentation/Base-Panoptic-FPN.yaml
DELETED
@@ -1,11 +0,0 @@
|
|
1 |
-
_BASE_: "../Base-RCNN-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
META_ARCHITECTURE: "PanopticFPN"
|
4 |
-
MASK_ON: True
|
5 |
-
SEM_SEG_HEAD:
|
6 |
-
LOSS_WEIGHT: 0.5
|
7 |
-
DATASETS:
|
8 |
-
TRAIN: ("coco_2017_train_panoptic_separated",)
|
9 |
-
TEST: ("coco_2017_val_panoptic_separated",)
|
10 |
-
DATALOADER:
|
11 |
-
FILTER_EMPTY_ANNOTATIONS: False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
configs/COCO-PanopticSegmentation/panoptic_fpn_R_101_3x.yaml
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
_BASE_: "Base-Panoptic-FPN.yaml"
|
2 |
-
MODEL:
|
3 |
-
WEIGHTS: "detectron2://ImageNetPretrained/MSRA/R-101.pkl"
|
4 |
-
RESNETS:
|
5 |
-
DEPTH: 101
|
6 |
-
SOLVER:
|
7 |
-
STEPS: (210000, 250000)
|
8 |
-
MAX_ITER: 270000
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|