transfiner / configs /COCO-InstanceSegmentation /mask_rcnn_regnetx_4gf_dds_fpn_1x.py
lkeab's picture
first try
5395ccf
raw
history blame
1.21 kB
from ..common.optim import SGD as optimizer
from ..common.coco_schedule import lr_multiplier_1x as lr_multiplier
from ..common.data.coco import dataloader
from ..common.models.mask_rcnn_fpn import model
from ..common.train import train
from detectron2.config import LazyCall as L
from detectron2.modeling.backbone import RegNet
from detectron2.modeling.backbone.regnet import SimpleStem, ResBottleneckBlock
# Replace default ResNet with RegNetX-4GF from the DDS paper. Config source:
# https://github.com/facebookresearch/pycls/blob/2c152a6e5d913e898cca4f0a758f41e6b976714d/configs/dds_baselines/regnetx/RegNetX-4.0GF_dds_8gpu.yaml#L4-L9 # noqa
model.backbone.bottom_up = L(RegNet)(
stem_class=SimpleStem,
stem_width=32,
block_class=ResBottleneckBlock,
depth=23,
w_a=38.65,
w_0=96,
w_m=2.43,
group_width=40,
freeze_at=2,
norm="FrozenBN",
out_features=["s1", "s2", "s3", "s4"],
)
model.pixel_std = [57.375, 57.120, 58.395]
optimizer.weight_decay = 5e-5
train.init_checkpoint = (
"https://dl.fbaipublicfiles.com/pycls/dds_baselines/160906383/RegNetX-4.0GF_dds_8gpu.pyth"
)
# RegNets benefit from enabling cudnn benchmark mode
train.cudnn_benchmark = True