Spaces:
Runtime error
Runtime error
#try: | |
# import detectron2 | |
#except: | |
import os | |
os.system('pip install git+https://github.com/SysCV/transfiner.git') | |
from matplotlib.pyplot import axis | |
import gradio as gr | |
import requests | |
import numpy as np | |
from torch import nn | |
import requests | |
import torch | |
from detectron2 import model_zoo | |
from detectron2.engine import DefaultPredictor | |
from detectron2.config import get_cfg | |
from detectron2.utils.visualizer import Visualizer | |
from detectron2.data import MetadataCatalog | |
''' | |
url1 = 'https://cdn.pixabay.com/photo/2014/09/07/21/52/city-438393_1280.jpg' | |
r = requests.get(url1, allow_redirects=True) | |
open("city1.jpg", 'wb').write(r.content) | |
url2 = 'https://cdn.pixabay.com/photo/2016/02/19/11/36/canal-1209808_1280.jpg' | |
r = requests.get(url2, allow_redirects=True) | |
open("city2.jpg", 'wb').write(r.content) | |
''' | |
model_name='./configs/COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml' | |
# model = model_zoo.get(model_name, trained=True) | |
cfg = get_cfg() | |
# add project-specific config (e.g., TensorMask) here if you're not running a model in detectron2's core library | |
cfg.merge_from_file(model_name) | |
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.5 # set threshold for this model | |
# Find a model from detectron2's model zoo. You can use the https://dl.fbaipublicfiles... url as w ell | |
cfg.MODEL.WEIGHTS = './output_3x_transfiner_r50.pth' | |
if not torch.cuda.is_available(): | |
cfg.MODEL.DEVICE='cpu' | |
predictor = DefaultPredictor(cfg) | |
def inference(image): | |
img = np.array(image) | |
outputs = predictor(img) | |
v = Visualizer(img, MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), scale=1.2) | |
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) | |
return out.get_image() | |
title = "Detectron2-MaskRCNN X101" | |
description = "demo for Detectron2. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below.\ | |
</br><b>Model: COCO-InstanceSegmentation/mask_rcnn_X_101_32x8d_FPN_3x.yaml</b>" | |
article = "<p style='text-align: center'><a href='https://arxiv.org/abs/2012.07177'>Simple Copy-Paste is a Strong Data Augmentation Method for Instance Segmentation</a> | <a href='https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md'>Detectron model ZOO</a></p>" | |
gr.Interface( | |
inference, | |
[gr.inputs.Image(type="pil", label="Input")], | |
gr.outputs.Image(type="numpy", label="Output"), | |
title=title, | |
description=description, | |
article=article, | |
examples=[ | |
["demo/sample_imgs/000000224200.jpg"], | |
["demo/sample_imgs/000000344909.jpg"] | |
]).launch() | |