Spaces:
Running
Running
liyucheng
commited on
Commit
·
79c6999
0
Parent(s):
Duplicate from liyucheng/selective_context
Browse files- .gitattributes +34 -0
- README.md +14 -0
- app.py +276 -0
- requirements.txt +6 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Selective Context
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
+
sdk: streamlit
|
7 |
+
sdk_version: 1.19.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
license: cc-by-2.0
|
11 |
+
duplicated_from: liyucheng/selective_context
|
12 |
+
---
|
13 |
+
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import GPT2Tokenizer, GPT2LMHeadModel, BertTokenizer
|
2 |
+
import torch
|
3 |
+
import streamlit as st
|
4 |
+
import re
|
5 |
+
from typing import List, Tuple
|
6 |
+
import spacy
|
7 |
+
import numpy as np
|
8 |
+
from dataclasses import dataclass
|
9 |
+
from nltk.tokenize import sent_tokenize, word_tokenize
|
10 |
+
|
11 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
12 |
+
st.set_page_config(layout="wide")
|
13 |
+
|
14 |
+
@dataclass
|
15 |
+
class LexicalUnits:
|
16 |
+
unit_type: str
|
17 |
+
text: List[str]
|
18 |
+
self_info: List[float] = None
|
19 |
+
|
20 |
+
def __add__(self, other):
|
21 |
+
assert self.unit_type == other.unit_type, 'Cannot add two different unit types'
|
22 |
+
return LexicalUnits(self.unit_type, self.text + other.text, self.self_info + other.self_info)
|
23 |
+
|
24 |
+
def __radd__(self, other):
|
25 |
+
if other == 0:
|
26 |
+
return self
|
27 |
+
return NotImplementedError()
|
28 |
+
|
29 |
+
def add_to_head(self, token, self_info):
|
30 |
+
return LexicalUnits(self.unit_type, [token] + self.text, [self_info] + self.self_info)
|
31 |
+
|
32 |
+
def add_to_tail(self, token, self_info):
|
33 |
+
return LexicalUnits(self.unit_type, self.text + [token], self.self_info + [self_info])
|
34 |
+
|
35 |
+
class SelectiveContext:
|
36 |
+
|
37 |
+
def __init__(self, model_type = 'gpt2', lang = 'en'):
|
38 |
+
|
39 |
+
self.model_type = model_type
|
40 |
+
self.lang = lang
|
41 |
+
|
42 |
+
# this means we calculate self-information sentence by sentence
|
43 |
+
self.sent_level_self_info = True
|
44 |
+
|
45 |
+
self._prepare_phrase_tokenizer()
|
46 |
+
self.sent_tokenize_pattern = r"(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s"
|
47 |
+
self.phrase_mask_token = ''
|
48 |
+
self.sent_mask_token = "<deleted>"
|
49 |
+
|
50 |
+
self._prepare_model()
|
51 |
+
|
52 |
+
def _prepare_phrase_tokenizer(self):
|
53 |
+
# we use space to tokenize sentence into phrases
|
54 |
+
# for English, we should use `spacy.load("en_core_web_sm").add_pipe('merge_noun_chunks')`
|
55 |
+
# for Chinese, use `nlp = spacy.load('zh_core_web_sm')`` directly
|
56 |
+
lang = self.lang
|
57 |
+
if lang == "en":
|
58 |
+
self.nlp = spacy.load("en_core_web_sm", disable=["ner"])
|
59 |
+
self.nlp.add_pipe('merge_noun_chunks')
|
60 |
+
elif lang == "zh":
|
61 |
+
self.nlp = spacy.load('zh_core_web_sm', disable=["ner"])
|
62 |
+
|
63 |
+
def _prepare_model(self):
|
64 |
+
if self.model_type == 'gpt2':
|
65 |
+
if self.lang == 'zh':
|
66 |
+
self.model = GPT2LMHeadModel.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
|
67 |
+
self.tokenizer = BertTokenizer.from_pretrained('uer/gpt2-chinese-cluecorpussmall')
|
68 |
+
else:
|
69 |
+
self.model = GPT2LMHeadModel.from_pretrained('gpt2')
|
70 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
|
71 |
+
self.model.to(DEVICE)
|
72 |
+
self.model.eval()
|
73 |
+
|
74 |
+
print('model loaded')
|
75 |
+
|
76 |
+
self.max_token_length = self.model.config.n_positions
|
77 |
+
self.get_self_information = self._get_self_info_via_gpt2
|
78 |
+
|
79 |
+
def get_self_information(self, text: str) -> Tuple[List[str], List[float]]:
|
80 |
+
# it takes text as input, and return a list of words and a list of self-information scores
|
81 |
+
raise NotImplementedError
|
82 |
+
|
83 |
+
def _get_self_info_via_gpt2(self, text: str) -> Tuple[List[str], List[float]]:
|
84 |
+
if self.lang == 'en':
|
85 |
+
text = f"<|endoftext|>{text}"
|
86 |
+
elif self.lang == 'zh':
|
87 |
+
text = f"[CLS]{text}"
|
88 |
+
with torch.no_grad():
|
89 |
+
encoding = self.tokenizer(text, add_special_tokens=False, return_tensors='pt')
|
90 |
+
encoding = encoding.to(DEVICE)
|
91 |
+
outputs = self.model(**encoding)
|
92 |
+
logits = outputs.logits
|
93 |
+
probs = torch.softmax(logits, dim=-1)
|
94 |
+
self_info = -torch.log(probs)
|
95 |
+
|
96 |
+
input_ids = encoding['input_ids']
|
97 |
+
input_ids_expaned = input_ids[:, 1:].unsqueeze(-1)
|
98 |
+
|
99 |
+
tokens = [self.tokenizer.decode(token_) for token_ in input_ids.squeeze().tolist()[1:]]
|
100 |
+
return tokens, self_info[:, :-1].gather(-1, input_ids_expaned).squeeze(-1).squeeze(0).tolist()
|
101 |
+
|
102 |
+
def _lexical_unit(self, sents):
|
103 |
+
|
104 |
+
if self.sent_level_self_info:
|
105 |
+
sent_self_info = []
|
106 |
+
all_noun_phrases = []
|
107 |
+
all_noun_phrases_info = []
|
108 |
+
all_tokens = []
|
109 |
+
all_token_self_info = []
|
110 |
+
|
111 |
+
for sent in sents:
|
112 |
+
print(sent)
|
113 |
+
tokens, self_info = self.get_self_information(sent)
|
114 |
+
sent_self_info.append(np.mean(self_info))
|
115 |
+
|
116 |
+
all_tokens.extend(tokens)
|
117 |
+
all_token_self_info.extend(self_info)
|
118 |
+
|
119 |
+
noun_phrases, noun_phrases_info = self._calculate_lexical_unit(tokens, self_info)
|
120 |
+
|
121 |
+
# We need to add a space before the first noun phrase for every sentence except the first one
|
122 |
+
if len(all_noun_phrases) != 0:
|
123 |
+
noun_phrases[0] = f" {noun_phrases[0]}"
|
124 |
+
all_noun_phrases.extend(noun_phrases)
|
125 |
+
all_noun_phrases_info.extend(noun_phrases_info)
|
126 |
+
|
127 |
+
return [
|
128 |
+
LexicalUnits('sent', text=sents, self_info=sent_self_info),
|
129 |
+
LexicalUnits('phrase', text=all_noun_phrases, self_info=all_noun_phrases_info),
|
130 |
+
LexicalUnits('token', text=all_tokens, self_info=all_token_self_info)
|
131 |
+
]
|
132 |
+
|
133 |
+
def _calculate_lexical_unit(self, tokens, self_info):
|
134 |
+
def _unit_info(tokens, self_info, units):
|
135 |
+
current_unit_idx = 0
|
136 |
+
current_position = 0
|
137 |
+
unit_self_info = [[] for _ in range(len(units))]
|
138 |
+
|
139 |
+
for idx, (token, info) in enumerate(zip(tokens, self_info)):
|
140 |
+
current_position += len(token)
|
141 |
+
if current_position == len(units[current_unit_idx]):
|
142 |
+
unit_self_info[current_unit_idx].append(info)
|
143 |
+
current_position = current_position - len(units[current_unit_idx])
|
144 |
+
current_unit_idx += 1
|
145 |
+
elif current_position > len(units[current_unit_idx]):
|
146 |
+
counter_ = 1
|
147 |
+
current_position = current_position - len(units[current_unit_idx])
|
148 |
+
current_unit_idx += 1
|
149 |
+
while current_position >= len(units[current_unit_idx]):
|
150 |
+
counter_ += 1
|
151 |
+
current_position = current_position - len(units[current_unit_idx])
|
152 |
+
current_unit_idx += 1
|
153 |
+
if current_unit_idx >= len(units):
|
154 |
+
break
|
155 |
+
partial_info = info/counter_
|
156 |
+
for _ in range(counter_):
|
157 |
+
unit_self_info[(current_unit_idx-1) - _].append(partial_info)
|
158 |
+
else:
|
159 |
+
if token == " ":
|
160 |
+
continue
|
161 |
+
unit_self_info[current_unit_idx].append(info)
|
162 |
+
|
163 |
+
unit_self_info_ = [np.mean(info) for info in unit_self_info]
|
164 |
+
return unit_self_info_
|
165 |
+
|
166 |
+
def _noun_phrases(sent):
|
167 |
+
noun_phrases = []
|
168 |
+
doc = self.nlp(sent)
|
169 |
+
for index, chunk in enumerate(doc):
|
170 |
+
if index == 0:
|
171 |
+
noun_phrases.append(chunk.text)
|
172 |
+
else:
|
173 |
+
noun_phrases.append(doc[index-1].whitespace_ + chunk.text)
|
174 |
+
return noun_phrases
|
175 |
+
|
176 |
+
if self.sent_level_self_info:
|
177 |
+
# in this case, the self_info is for each sentence
|
178 |
+
# we only need to calculate the self_info for each phrase
|
179 |
+
|
180 |
+
sent = ''.join(tokens)
|
181 |
+
# noun_phrases = [chunk.text for chunk in self.nlp(sent).noun_chunks]
|
182 |
+
noun_phrases = _noun_phrases(sent)
|
183 |
+
# noun_phrases[-1] = noun_phrases[-1] + ' '
|
184 |
+
noun_phrases_info = _unit_info(tokens, self_info, noun_phrases)
|
185 |
+
|
186 |
+
return noun_phrases, noun_phrases_info
|
187 |
+
|
188 |
+
def beautify_context(self, context: str) -> str:
|
189 |
+
context = re.sub(r"\s+", " ", context)
|
190 |
+
return context
|
191 |
+
|
192 |
+
def self_info_mask(self, sents: List[str], self_info: List[float], mask_level):
|
193 |
+
# mask_level: mask sentences, phrases, or tokens
|
194 |
+
sents_after_mask = []
|
195 |
+
masked_sents = []
|
196 |
+
|
197 |
+
self.ppl_threshold = np.nanpercentile(self_info, self.mask_ratio * 100)
|
198 |
+
|
199 |
+
# if title is not None:
|
200 |
+
# with open(os.path.join(self.path, title+'_prob_token.tsv'), 'w', encoding='utf-8') as f:
|
201 |
+
# for token, info in zip(tokens, self_info):
|
202 |
+
# f.write(f"{token}\t{info}\n")
|
203 |
+
# with open(os.path.join(self.path, title+'_prob_sent.tsv'), 'w', encoding='utf-8') as f:
|
204 |
+
# for sent, info in zip(sents, sent_self_info):
|
205 |
+
# f.write(f"{sent}\n{info}\n\n")
|
206 |
+
|
207 |
+
for sent, info in zip(sents, self_info):
|
208 |
+
if info < self.ppl_threshold:
|
209 |
+
masked_sents.append(sent)
|
210 |
+
sents_after_mask.append(self.mask_a_sent(sent, mask_level))
|
211 |
+
else:
|
212 |
+
sents_after_mask.append(sent)
|
213 |
+
masked_context = " ".join(sents_after_mask) if mask_level == 'sent' else "".join(sents_after_mask)
|
214 |
+
|
215 |
+
return masked_context, masked_sents
|
216 |
+
|
217 |
+
def mask_a_sent(self, sent, level):
|
218 |
+
if level == 'phrase':
|
219 |
+
return self.phrase_mask_token
|
220 |
+
elif level == 'sent':
|
221 |
+
return self.sent_mask_token
|
222 |
+
elif level == 'token':
|
223 |
+
return ''
|
224 |
+
|
225 |
+
def __call__(self, text: str, reduce_ratio: float = 0.35, reduce_level :str = 'phrase') -> List[str]:
|
226 |
+
context = self.beautify_context(text)
|
227 |
+
|
228 |
+
self.mask_ratio = reduce_ratio
|
229 |
+
|
230 |
+
sents = re.split(self.sent_tokenize_pattern, context)
|
231 |
+
sents = [sent.strip() for sent in sents if sent.strip()]
|
232 |
+
|
233 |
+
# You want the reduce happen at sentence level, phrase level, or token level?
|
234 |
+
assert reduce_level in ['sent', 'phrase', 'token'], f"reduce_level should be one of ['sent', 'phrase', 'token'], got {reduce_level}"
|
235 |
+
sent_lus, phrase_lus, token_lus = self._lexical_unit(sents)
|
236 |
+
lexical_level = {
|
237 |
+
'sent': sent_lus,
|
238 |
+
'phrase': phrase_lus,
|
239 |
+
'token': token_lus
|
240 |
+
}
|
241 |
+
|
242 |
+
# context is the reduced context, masked_sents denotes what context has been filtered out
|
243 |
+
context, masked_sents = self.self_info_mask(lexical_level[reduce_level].text, lexical_level[reduce_level].self_info, reduce_level)
|
244 |
+
return context, masked_sents
|
245 |
+
|
246 |
+
# streamlit app.py
|
247 |
+
# here we ask the user to input the text and the reduce ratio
|
248 |
+
# then we call the SelectiveContext to compress the text
|
249 |
+
|
250 |
+
st.title("Selective Context: Compress your prompt")
|
251 |
+
st.markdown("This is a demo for the **Selective Context** algorithm.")
|
252 |
+
st.markdown("Use this algorithm to **compress** your prompt, so that LLMs can deal with **2x more context**!")
|
253 |
+
st.markdown("- The algorithm filters out the content that is less informative. \n - You can also choose to filter out phrases or tokens instead of sentences. \n - Checkout the paper for details and experiments! [https://arxiv.org/abs/2304.12102](https://arxiv.org/abs/2304.12102).")
|
254 |
+
st.write("")
|
255 |
+
|
256 |
+
st.subheader("Demo")
|
257 |
+
|
258 |
+
lang = st.radio("Please choose the language: ", ('en', 'zh'))
|
259 |
+
ratio = st.radio("Please choose the compress ratio [we recommend 0.5]: ", (0.5, 0.2, 0.35, 0.65, 0.8))
|
260 |
+
reduce_level = st.radio("Please choose the reduce level: ", ('phrase', 'token', 'sent'))
|
261 |
+
|
262 |
+
text = st.text_area("Please input your text here", height=300)
|
263 |
+
|
264 |
+
@st.cache_resource()
|
265 |
+
def load_model(lang):
|
266 |
+
model = SelectiveContext(lang=lang)
|
267 |
+
return model
|
268 |
+
|
269 |
+
if st.button("Compress"):
|
270 |
+
model = load_model(lang)
|
271 |
+
context, masked_sents = model(text, reduce_ratio=ratio, reduce_level=reduce_level)
|
272 |
+
st.subheader("The compressed context is:")
|
273 |
+
st.code(context)
|
274 |
+
# st.divider()
|
275 |
+
st.subheader("The filtered out content is:")
|
276 |
+
st.write(masked_sents)
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
spacy
|
3 |
+
https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.0.0/en_core_web_sm-3.0.0.tar.gz#en_core_web_sm
|
4 |
+
nltk
|
5 |
+
torch
|
6 |
+
numpy
|