File size: 7,483 Bytes
fd19ca2
 
 
57433a6
fd19ca2
 
 
 
57433a6
 
c03cca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57433a6
593a1aa
 
 
 
 
 
 
 
674be41
593a1aa
 
99b1651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ddcb12
fd19ca2
 
 
 
99b1651
504eebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd19ca2
504eebe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd19ca2
57433a6
1ddcb12
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57433a6
fd19ca2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import os.path as osp

import gradio as gr
import spaces
import torch
from threading import Thread
from transformers import AutoModelForCausalLM, AutoProcessor, TextIteratorStreamer


HEADER = ("""
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3" style="margin-right: 20px; text-decoration: none; display: flex; align-items: center;">
    <img src="https://github.com/DAMO-NLP-SG/VideoLLaMA3/blob/main/assets/logo.png?raw=true" alt="VideoLLaMA 3 πŸ”₯πŸš€πŸ”₯" style="max-width: 120px; height: auto;">
  </a>
  <div>
    <h1>VideoLLaMA 3: Frontier Multimodal Foundation Models for Video Understanding</h1>
    <h5 style="margin: 0;">If this demo please you, please give us a star ⭐ on Github or πŸ’– on this space.</h5>
  </div>
</div>
<div style="display: flex; justify-content: center; margin-top: 10px;">
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3"><img src='https://img.shields.io/badge/Github-VideoLLaMA3-9C276A' style="margin-right: 5px;"></a>
  <a href="https://arxiv.org/pdf/2501.13106"><img src="https://img.shields.io/badge/Arxiv-2501.13106-AD1C18" style="margin-right: 5px;"></a>
  <a href="https://huggingface.co./collections/DAMO-NLP-SG/videollama3-678cdda9281a0e32fe79af15"><img src="https://img.shields.io/badge/πŸ€—-Checkpoints-ED5A22.svg" style="margin-right: 5px;"></a>
  <a href="https://github.com/DAMO-NLP-SG/VideoLLaMA3/stargazers"><img src="https://img.shields.io/github/stars/DAMO-NLP-SG/VideoLLaMA3.svg?style=social"></a>
</div>
""")

device = "cuda"
model = AutoModelForCausalLM.from_pretrained(
    "DAMO-NLP-SG/VideoLLaMA3-7B",
    trust_remote_code=True,
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
)
model.to(device)
processor = AutoProcessor.from_pretrained("DAMO-NLP-SG/VideoLLaMA3-7B", trust_remote_code=True)


example_dir = "./examples"
image_formats = ("png", "jpg", "jpeg")
video_formats = ("mp4",)

image_examples, video_examples = [], []
if example_dir is not None:
    example_files = [
        osp.join(example_dir, f) for f in os.listdir(example_dir)
    ]
    for example_file in example_files:
        if example_file.endswith(image_formats):
            image_examples.append([example_file])
        elif example_file.endswith(video_formats):
            video_examples.append([example_file])


def _on_video_upload(messages, video):
        if video is not None:
            # messages.append({"role": "user", "content": gr.Video(video)})
            messages.append({"role": "user", "content": {"path": video}})
        return messages, None
    
def _on_image_upload(messages, image):
    if image is not None:
        # messages.append({"role": "user", "content": gr.Image(image)})
        messages.append({"role": "user", "content": {"path": image}})
    return messages, None

def _on_text_submit(messages, text):
    messages.append({"role": "user", "content": text})
    return messages, ""

@spaces.GPU(duration=120)
def _predict(messages, input_text, do_sample, temperature, top_p, max_new_tokens,
             fps, max_frames):
    if len(input_text) > 0:
        messages.append({"role": "user", "content": input_text})
    new_messages = []
    contents = []
    for message in messages:
        if message["role"] == "assistant":
            if len(contents):
                new_messages.append({"role": "user", "content": contents})
                contents = []
            new_messages.append(message)
        elif message["role"] == "user":
            if isinstance(message["content"], str):
                contents.append(message["content"])
            else:
                media_path = message["content"][0]
                if media_path.endswith(video_formats):
                    contents.append({"type": "video", "video": {"video_path": media_path, "fps": fps, "max_frames": max_frames}})
                elif media_path.endswith(image_formats):
                    contents.append({"type": "image", "image": {"image_path": media_path}})
                else:
                    raise ValueError(f"Unsupported media type: {media_path}")

    if len(contents):
        new_messages.append({"role": "user", "content": contents})

    if len(new_messages) == 0 or new_messages[-1]["role"] != "user":
        return messages

    generation_config = {
        "do_sample": do_sample,
        "temperature": temperature,
        "top_p": top_p,
        "max_new_tokens": max_new_tokens
    }

    inputs = processor(
        conversation=new_messages,
        add_system_prompt=True,
        add_generation_prompt=True,
        return_tensors="pt"
    )
    inputs = {k: v.to(device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
    if "pixel_values" in inputs:
        inputs["pixel_values"] = inputs["pixel_values"].to(torch.bfloat16)

    streamer = TextIteratorStreamer(processor.tokenizer, skip_prompt=True, skip_special_tokens=True)
    generation_kwargs = {
        **inputs,
        **generation_config,
        "streamer": streamer,
    }

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()

    messages.append({"role": "assistant", "content": ""})
    for token in streamer:
        messages[-1]['content'] += token
        yield messages


with gr.Blocks() as interface:
    gr.Markdown(HEADER)
    with gr.Row():
        chatbot = gr.Chatbot(type="messages", elem_id="chatbot", height=710)

        with gr.Column():
            with gr.Tab(label="Input"):

                with gr.Row():
                    input_video = gr.Video(sources=["upload"], label="Upload Video")
                    input_image = gr.Image(sources=["upload"], type="filepath", label="Upload Image")

                if len(image_examples):
                    gr.Examples(image_examples, inputs=[input_image], label="Example Images")
                if len(video_examples):
                    gr.Examples(video_examples, inputs=[input_video], label="Example Videos")

                input_text = gr.Textbox(label="Input Text", placeholder="Type your message here and press enter to submit")

                submit_button = gr.Button("Generate")

            with gr.Tab(label="Configure"):
                with gr.Accordion("Generation Config", open=True):
                    do_sample = gr.Checkbox(value=True, label="Do Sample")
                    temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, label="Temperature")
                    top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P")
                    max_new_tokens = gr.Slider(minimum=0, maximum=4096, value=2048, step=1, label="Max New Tokens")

                with gr.Accordion("Video Config", open=True):
                    fps = gr.Slider(minimum=0.0, maximum=10.0, value=1, label="FPS")
                    max_frames = gr.Slider(minimum=0, maximum=256, value=180, step=1, label="Max Frames")

    input_video.change(_on_video_upload, [chatbot, input_video], [chatbot, input_video])
    input_image.change(_on_image_upload, [chatbot, input_image], [chatbot, input_image])
    input_text.submit(_on_text_submit, [chatbot, input_text], [chatbot, input_text])
    submit_button.click(
        _predict,
        [
            chatbot, input_text, do_sample, temperature, top_p, max_new_tokens,
            fps, max_frames
        ],
        [chatbot],
    )


if __name__ == "__main__":
    interface.launch()