File size: 39,638 Bytes
246c106
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
import argparse
import contextlib
import logging
import math
import os
import time

import mup
import numpy as np
import torch
import torchvision.transforms.functional as transforms_f
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from einops import rearrange
from lpips import lpips
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
import traceback

from transformers import (
    default_data_collator,
    get_scheduler,
)
from collections import defaultdict
from cont_data import RawFeatureDataset, get_maskgit_collator_feature

from common.eval_utils import decode_tokens, compute_lpips, decode_features
from genie.config import DiffusionGenieConfig
from genie.st_mar import STMAR

from visualize import   decode_latents_wrapper
from skimage import metrics as image_metrics
from matplotlib import pyplot as plt
from datetime import datetime
from accelerate import DistributedDataParallelKwargs

torch.autograd.set_detect_anomaly(True)

# Get current date and time
now = datetime.now()

# Format the datetime object as a string
formatted_date = now.strftime("%Y-%m-%d %H:%M:%S")

torch.set_float32_matmul_precision("medium")
logger = get_logger(__name__)
SVD_SCALE = 0.18215

def parse_args():
    # parser = argparse.ArgumentParser(description="Train a MaskGIT or Llama-style LLM on video generation.")
    parser = argparse.ArgumentParser(description="Train a spatial-temporal MaskGIT-style model on video generation.")

    # Data
    parser.add_argument(
        "--train_data_dir", type=str, default="data/1x_humanoid_magvit_traj1000_train",
        help="Directory containing tokenized data, should have a `video.bin`, `metadata.json` and `segment_ids.json`."
    )
    parser.add_argument(
        "--val_data_dir", type=str, default="data/1x_humanoid_magvit_traj1000_val",
        help="Directory containing tokenized data, should have a `video.bin`, `metadata.json` and `segment_ids.json`."
    )
    parser.add_argument(
        "--domain", type=str, default="1x_humanoid",
        help="The domain name for the dataset"
    )
    parser.add_argument(
        "--window_size",
        type=int,
        default=12,
        help="Number of frames to in a sequence.",
    )
    parser.add_argument(
        "--stride",
        type=int,
        default=None,
        help="Difference in frame count between consecutive frames in a sequence.",
    )
    parser.add_argument(
        "--filter_overlaps",
        action="store_true",
        help=(
            "Whether to filter repeated frames in the train dataset (`filter_overlaps` always true for the val set). "
            "Filtering essentially makes the training dataset less correlated but ~16x smaller, "
            "see the `filter_overlaps` argument in `RawTokenDataset` for details."),
        default=True
    )

    # Model
    parser.add_argument(
        "--llama_config",
        type=str,
        help="`transformers.LlamaConfig` json. "
             "E.g. https://huggingface.co./1x-technologies/Llama_1B_v0/blob/main/config.json",
    )
    parser.add_argument(
        "--genie_config",
        type=str,
        help="GenieConfig json."
    ),

    parser.add_argument(
        "--warmstart_path",
        type=str,
        default=None,
        help="A path to a checkpoint to warmstart a model from, possibly not trained on the same dataset, "
             "will resize embeddings if needed.",
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help="If the training should continue from a checkpoint folder.",
    )

    # Training
    parser.add_argument(
        "--per_device_train_batch_size",
        type=int,
        default=4,
        help="Batch size (per device) for the training dataloader.",
    )
    parser.add_argument(
        "--per_device_eval_batch_size",
        type=int,
        default=2,
        help="Batch size (per device) for the evaluation dataloader.",
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        default=False,
        action="store_true",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=2e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument("--weight_decay", type=float, default=0.01, help="Weight decay to use.")
    parser.add_argument("--num_train_epochs", type=int, default=2, help="Total number of training epochs to perform.")
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
    )
    parser.add_argument(
        "--max_eval_steps",
        type=int,
        default=int(1e10),
        help="Only evaluate on `max_eval_steps` batches of validation data per process, faster.",
    )

    parser.add_argument(
        "--eval_every_n_steps",
        type=int,
        default=1000,
        help="Eval every N training steps.",
    )
    parser.add_argument(
        "--vis_every_n_steps",
        type=int,
        default=1000,
        help="Visualize every N training steps.",
    )
    parser.add_argument(
        "--lr_scheduler_type",
        type=str,
        default="constant_with_warmup",
        help="The scheduler type to use.",
        choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup", "custom_cosine"],
    )
    parser.add_argument(
        "--num_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument(
        "--max_grad_norm",
        type=float,
        default=10,
        help="Threshold to clip gradients.",
    )
    parser.add_argument(
        "--attention_dropout",
        type=float,
        default=0.01,
        help="Attention dropout prob.",
    )
    parser.add_argument(
        "--adam_beta_1",
        type=float,
        default=0.9,
    )
    parser.add_argument(
        "--adam_beta_2",
        type=float,
        default=0.95,
    )
    parser.add_argument(
        "--adam_eps",
        type=float,
        default=1e-8,
    )

    # Misc
    parser.add_argument("--output_dir", type=str, required=True, help="Where to store the model checkpoints.")
    parser.add_argument(
        "--checkpointing_steps",
        type=str,
        default="10000",
        help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.",
    )
    parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
    parser.add_argument(
        "--overfit_first_batch",
        action="store_true",
        help=(
            "Debug option that trains and validates on only the first batch of the training dataset."
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="wandb",
        help="The integration to report the results and logs to.",
    )
    parser.add_argument(
        "--mu_transfer",
        action="store_true",
        help="If specified, will train with mu transfer reparametrizations. Only supports Llama models.",
        default=False
    )
    parser.add_argument(
        "--no_compile",
        action="store_true",
        help="If specified, will not compile the model.",
        default=True
    )
    parser.add_argument(
        "--add_action_input",
        action="store_true",
        help=(
            "Whether to add action as input to the dynamics model. ")
    )
    parser.add_argument(
        "--run_name",
        type=str,
        default="video_prediction",
        help="",
    )
    parser.add_argument(
        "--cleanup_checkpoints",
        action="store_true",
        help=(
            "Whether to clean up checkpoints (to keep only the last 3) along the training. "),
        default=True
    )
    parser.add_argument(
        "--use_raw_image_as_latent",
        action="store_true",
        help="If specified, will train with mu transfer reparametrizations. Only supports Llama models.",
    )
    return parser


def save_checkpoint(model, accelerator, args, filename):
    """
    filename: `save_path = os.path.join(args.output_dir, filename)`
    """
    unwrapped_model = accelerator.unwrap_model(model)
    save_path = os.path.join(args.output_dir, filename)

    if accelerator.is_main_process:
        unwrapped_model.save_pretrained(
            save_path, is_main_process=accelerator.is_main_process, save_function=accelerator.save
        )
        accelerator.save_state(save_path)


@torch.no_grad()
def visualize(accelerator, model, dataloader, window_size, encoder_type,
              encoder_name_or_path, metrics_prefix="eval", max_steps=1, use_raw_image_as_latent=False):
    """
    Visualizes model's autoregressive generation outputs, logged to wandb.
    It uses teacher-forcing (causal in time axis)
    """

    # breakpoint()
    accelerator.wait_for_everyone()
    unwrapped_model = accelerator.unwrap_model(model)
    if not unwrapped_model.config.jointly_predict_states:
        return
    metrics = defaultdict(list)

    if hasattr(dataloader.dataset, "metadata"):
        if accelerator.is_main_process:
            lpips_alex = lpips.LPIPS(net="alex")  # Calculate LPIPS w/ AlexNet, the fastest option
    else:
        if accelerator.is_main_process:
            lpips_alex = lpips.LPIPS(net="alex")  # Calculate LPIPS w/ AlexNet, the fastest option

    decode_latents = decode_latents_wrapper(encoder_type=encoder_type, encoder_name_or_path=encoder_name_or_path)  # re-initializing every time to save memory
    unwrapped_model.eval()

    for step, batch in enumerate(dataloader):
        # Note: hardcoding 4 image cap for faster inference on small models
        TEST_NUM = 4
        reshaped_labels = rearrange(batch["labels"][:TEST_NUM], "b (t s) c -> b t s c", t=window_size).to(accelerator.device)  # `s` is really `(h, w)`
        domains = batch["domain"][:TEST_NUM]

        if 'action_ids' in batch:
            action_ids = batch["action_ids"][:TEST_NUM].to(accelerator.device)
        else:
            action_ids = None

        # hardcoding half of frames for context
        num_prompt_frames = unwrapped_model.config.num_prompt_frames

        num_new_tokens = batch["w"][0] * batch["h"][0] * (window_size - num_prompt_frames)
        prompt_input_ids = rearrange(reshaped_labels[:, :num_prompt_frames], "b t s c -> b (t s) c")
        outputs = unwrapped_model.generate(input_ids=prompt_input_ids, attention_mask=torch.ones_like(prompt_input_ids),
                                            max_new_tokens=num_new_tokens, min_new_tokens=num_new_tokens,
                                            action_ids=action_ids,
                                            domain=batch["domain"][:TEST_NUM],
                                            w=batch["w"][:TEST_NUM],
                                            h=batch["h"][:TEST_NUM])

        output_tokens = rearrange(outputs, "b (t h w) c -> b t h w c", t=window_size,
                                h=batch["h"][0], w=batch["w"][0])
        gtruth_tokens = rearrange(reshaped_labels[:, num_prompt_frames:], "b t (h w) c -> b t h w c",
                                h=batch["h"][0], w=batch["w"][0])

        if not use_raw_image_as_latent:
            output_tokens = output_tokens / SVD_SCALE
            gtruth_tokens = gtruth_tokens / SVD_SCALE
            decoded_output = decode_features(output_tokens.cpu(), decode_latents)
            decoded_gtruth = decode_features(gtruth_tokens.cpu(), decode_latents)
        else:
            decoded_output = ((output_tokens + 0.5) * 255).long()
            decoded_gtruth = ((gtruth_tokens + 0.5) * 255).long()
        decoded_output = accelerator.gather(decoded_output.to(accelerator.device)).cpu()
        decoded_gtruth = accelerator.gather(decoded_gtruth.to(accelerator.device)).cpu()

        if accelerator.is_main_process and step < 2:
            exs_per_fig = 4

            for j in range(0, len(decoded_output), exs_per_fig):
                # with 10 percent change we log some output. to save spaces
                fig, axs = plt.subplots(nrows=2 * exs_per_fig, ncols=window_size, figsize=(3 * window_size, 3 * 2 * exs_per_fig))
                # If len(decoded_output) is not a multiple of 4, make sure to truncate properly
                for k in range(min(exs_per_fig, len(decoded_output) - j)):
                    for i in range(num_prompt_frames):
                        for ax in (axs[k * 2, i], axs[k * 2 + 1, i]):
                            ax.imshow(transforms_f.to_pil_image(decoded_output[j + k, i]))
                            ax.set_title("Context")
                            ax.axis("off")

                    for i in range(num_prompt_frames, window_size):
                        axs[k * 2, i].imshow(transforms_f.to_pil_image(decoded_gtruth[j + k, i - num_prompt_frames]))
                        axs[k * 2, i].set_title("Ground truth")
                        axs[k * 2 + 1, i].imshow(transforms_f.to_pil_image(decoded_output[j + k, i]))
                        axs[k * 2 + 1, i].set_title("Prediction")
                        for ax in axs[:, i]:
                            ax.axis("off")

                wandb_tracker = accelerator.get_tracker("wandb")
                wandb_tracker.log({f"vis_{metrics_prefix}_{j}": fig}, commit=False)
                wandb_tracker.log({f"{domains[0]}/vis_{metrics_prefix}_{j}": fig}, commit=False)

                plt.close(fig)

            metrics["ar_lpips"].extend(compute_lpips(decoded_gtruth,  # Note: not parallelizing right now
                                                     decoded_output[:, num_prompt_frames:], lpips_alex))

            gt_frames_numpy = decoded_gtruth.detach().cpu().numpy()
            pred_frames_numpy = decoded_output[:, num_prompt_frames:].detach().cpu().numpy()
            psnr = [image_metrics.peak_signal_noise_ratio(
                gt_frames_numpy[i] / 255., pred_frames_numpy[i] / 255., data_range=1.0) for i in range(gt_frames_numpy.shape[0])]

            ssim = [np.mean([image_metrics.structural_similarity(
                gt_frames_numpy[i][j]  / 255., pred_frames_numpy[i][j]  / 255., data_range=1.0, channel_axis=0) \
                for i in range(gt_frames_numpy.shape[0])]) for j in range(gt_frames_numpy.shape[1])]

            # compute some other metrics
            metrics[f"{metrics_prefix}/ar_psnr"].extend(psnr)
            metrics[f"{metrics_prefix}/ar_ssim"].extend(ssim)
            metrics[f"{batch['domain'][0]}/ar_lpips"].extend(compute_lpips(decoded_gtruth,  # Note: not parallelizing right now
                                                     decoded_output[:, num_prompt_frames:], lpips_alex))

        if step + 1 >= max_steps:
            break

    unwrapped_model.train()
    if accelerator.is_main_process:
        metrics = {f"{metrics_prefix}_{key}": np.mean(val) for key, val in metrics.items() if len(val) > 0}

        print(f"{metrics=}")
        wandb_tracker = accelerator.get_tracker("wandb")
        wandb_tracker.log(metrics, commit=False)

def train(accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader, experiment_config, config, args):
    total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.per_device_train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")

    # Only show the progress bar once on each machine.
    progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
    completed_steps = 0
    starting_epoch = 0
    resume_step = None
    checkpoint_path = None

    # Potentially load in the weights and states from a previous save
    if args.resume_from_checkpoint:
        if  os.path.exists(args.resume_from_checkpoint + "/pytorch_model.bin") or os.path.exists(args.resume_from_checkpoint + "/model.safetensors"):
            checkpoint_path = args.resume_from_checkpoint
            path = os.path.basename(args.resume_from_checkpoint.rstrip("/"))
        else:
            # Get the most recent checkpoint
            base_path = os.path.dirname(args.resume_from_checkpoint)
            dirs = [os.path.join(base_path, f.name) for f in os.scandir(base_path) if f.is_dir()]
            dirs.sort(key=os.path.getctime)

            # Sorts folders by date modified, most recent checkpoint is the last
            if len(dirs) > 0:
                path = dirs[-1]
                checkpoint_path = path
                path = os.path.basename(checkpoint_path)

        try:
            accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")

            if os.path.exists(checkpoint_path):
                # for finetuning with a different structures
                print(f"loading checkpoint from {checkpoint_path}")
                accelerator.load_state(checkpoint_path, strict=False)
                # tied weights not saved so can't load strict, but also no need to tie again
                # Extract `epoch_{i}` or `step_{i}`
                training_difference = os.path.splitext(path)[0]
            else:
                print("No checkpoint found, training from scratch.")
                training_difference = "step_0"

            if "epoch" in training_difference:
                starting_epoch = int(training_difference.replace("epoch_", "")) + 1
                resume_step = None
                num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
                completed_steps = starting_epoch * num_update_steps_per_epoch
            else:
                # need to multiply `gradient_accumulation_steps` to reflect real steps
                resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
                starting_epoch = resume_step // len(train_dataloader)
                completed_steps = resume_step // args.gradient_accumulation_steps
                resume_step -= starting_epoch * len(train_dataloader)
        except Exception as e:
            print("load checkpoint incomplete", traceback.format_exc())

    # update the progress_bar if load from checkpoint
    progress_bar.update(completed_steps)
    loss_info = torch.zeros(2, device=accelerator.device)  # sum, count

    for epoch in range(starting_epoch, args.num_train_epochs):
        model.train()
        train_dataloader.set_epoch(epoch)

        # potenally cleanup the previous checkpoints
        if args.cleanup_checkpoints:
            if os.path.exists(args.output_dir):
                dirs = [os.path.join(args.output_dir, f.name) for f in os.scandir(args.output_dir) if f.is_dir()]
                if len(dirs) > 3:
                    dirs.sort(key=os.path.getctime)

                    paths = dirs[:-3]
                    # only keep the last 3
                    for path in paths:
                        print(f"remove rm -rf {path}")
                        # os.system(f"rm -rf {path}")

        if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
            # We skip the first `n` batches in the dataloader when resuming from a checkpoint
            active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
        else:
            active_dataloader = train_dataloader

        _time = time.time()
        # accelerator.wait_for_everyone()
        dataloader_iter = iter(active_dataloader)
        for step in range(len(active_dataloader)):
            batch = next(dataloader_iter)
            batch_size = batch["input_ids"].size(0)

            # Manual gradient accumulation because accelerator somehow taking a lot of memory
            is_update_step = (step + 1) % args.gradient_accumulation_steps == 0
            ctx_manager = contextlib.nullcontext() if is_update_step else accelerator.no_sync(model)
            train_action_loss = 0

            with ctx_manager:
                outputs = model(**batch)
                loss = outputs.loss

                if not torch.isnan(loss).any():
                    loss_info[0] += loss.detach().mean() * batch_size
                    if "action_loss" in outputs:
                        train_action_loss = outputs.action_loss.item()
                        loss += config.action_loss_weight * outputs.action_loss
                    accelerator.backward(loss / args.gradient_accumulation_steps)
                else:
                    print(f"Warning: NaN or Inf detected in loss for domain: {batch['domain']}. Skipping backward pass.")
                    dummy_loss = torch.zeros_like(loss, requires_grad=True)
                    accelerator.backward(dummy_loss)
                loss_info[1] += batch_size

            if not is_update_step:
                continue

            # Everything below only happens on update step
            if args.max_grad_norm is not None:
                accelerator.clip_grad_norm_(model.parameters(), args.max_grad_norm)

            optimizer.step()
            lr_scheduler.step()
            optimizer.zero_grad()
            loss_info = accelerator.reduce(loss_info)
            train_action_loss = train_action_loss / loss_info[1]
            avg_train_loss = (loss_info[0] / loss_info[1]).item()  # sum / count
            loss_info *= 0  # reset sum and count

            batch_time = time.time() - _time  # accumulated batch
            _time = time.time()
            accelerator.log(
                {
                    "train_loss": avg_train_loss,
                    "train_action_loss": train_action_loss,
                    f"stat/{batch['domain'][0]}_action_loss": train_action_loss,
                    f"stat/{batch['domain'][0]}_train_loss": avg_train_loss,
                    "epoch": epoch,
                    "update_step": completed_steps,
                    "examples_processed": completed_steps * args.per_device_train_batch_size
                                          * args.gradient_accumulation_steps * accelerator.num_processes,
                    "learning_rate": lr_scheduler.get_last_lr()[0],
                    "flops": (completed_steps + 1) * experiment_config["FLOPs_per_update_step"],
                    "throughput_examples": experiment_config["effective_batch_size"] / batch_time,
                }, step=completed_steps)

            progress_bar.update(1)
            completed_steps += 1

            # print(f"{completed_steps %  args.checkpointing_steps=} {completed_steps=} {args.checkpointing_steps=}")
            if  completed_steps % int(args.checkpointing_steps) == 0:
                print(f"Saving checkpoint at step {completed_steps}!")
                save_checkpoint(model, accelerator, args, f"step_{completed_steps}")

            if completed_steps % args.eval_every_n_steps == 0:
                time.sleep(1) # manual adding time sleep
                model.eval()
                eval_losses = []

                # Compute token-level accuracy (w/ teacher forcing)
                num_correct = 0
                num_total = 0

                # to resolve the data collating issues
                eval_dataloader_iter = iter(eval_dataloader)
                for step in range(min(args.max_eval_steps, len(eval_dataloader))):
                    batch = next(eval_dataloader_iter)
                    batch_size = len(batch["input_ids"])  # Last batch might not be full
                    with torch.no_grad():
                        outputs = model(**batch)

                    loss = outputs.loss
                    eval_losses.append(accelerator.gather_for_metrics(loss.repeat(batch_size)))

                    if "acc" in outputs:
                        # `num_correct` and `num_total` actually track mean accuracy in this case.
                        num_correct_batch = accelerator.reduce(outputs.acc, reduction="mean").item() * batch_size
                        num_total_batch = batch_size
                        num_correct += num_correct_batch
                        num_total += num_total_batch
                    else:
                        shifted_preds = torch.argmax(outputs.logits[:, :-1, :], dim=-1)
                        shifted_labels = batch["labels"][:, 1:]
                        num_correct_batch = accelerator.gather_for_metrics((shifted_preds == shifted_labels).sum()).sum().item()
                        num_total_batch = accelerator.gather_for_metrics(torch.tensor(torch.numel(shifted_labels),
                                                                device=accelerator.device)).sum().item()
                        num_correct += num_correct_batch
                        num_total += num_total_batch

                    if step >= args.max_eval_steps * args.num_datasets:
                        break

                    try:
                        accelerator.log(
                        {
                            f"stat/{batch['domain'][0]}_eval_loss": eval_losses[-1],
                        #     f"{batch['domain'][0]}_stat/eval_teacher_acc": num_correct_batch / num_total_batch
                        },
                        step=completed_steps,
                        )
                    except Exception as e:
                        print("log failed", e)

                eval_losses = torch.cat(eval_losses)
                eval_loss = torch.mean(eval_losses).item()
                eval_teacher_acc = num_correct / num_total

                logger.info(f"{completed_steps=}  {eval_loss=} {eval_teacher_acc=}")

                accelerator.log(
                    {
                        "eval_loss": eval_loss,
                        "epoch": epoch,
                        "update_step": completed_steps,
                        "examples_processed": completed_steps * args.per_device_train_batch_size
                                              * args.gradient_accumulation_steps * accelerator.num_processes,
                        "flops": completed_steps * experiment_config["FLOPs_per_update_step"],
                    },
                    step=completed_steps,
                )

                # Switch back to train mode
                model.train()

            if completed_steps % args.vis_every_n_steps == 0:
                if "encoder_type" not in experiment_config:
                    experiment_config["encoder_name_or_path"] = "data/magvit2.ckpt"
                    experiment_config["encoder_type"] = "magvit"

                if not args.overfit_first_batch:  # val is same as train otherwise
                    visualize(accelerator, model, eval_dataloader, args.window_size,
                              experiment_config["encoder_type"], experiment_config["encoder_name_or_path"], "val",
                              use_raw_image_as_latent=args.use_raw_image_as_latent)

                visualize(accelerator, model, train_dataloader, args.window_size,
                          experiment_config["encoder_type"], experiment_config["encoder_name_or_path"], "train",
                          use_raw_image_as_latent=args.use_raw_image_as_latent)

            if completed_steps >= args.max_train_steps:
                break

        if args.checkpointing_steps == "epoch":
            save_checkpoint(model, accelerator, args, f"epoch_{epoch}")

    accelerator.end_training()
    save_checkpoint(model, accelerator, args, f"final_checkpt")


def main():
    parser = parse_args()
    args = parser.parse_args()

    # Manual gradient accumulation
    ddp_kwargs = DistributedDataParallelKwargs(find_unused_parameters=True)
    accelerator = Accelerator(gradient_accumulation_steps=1, log_with=args.report_to, project_dir=args.output_dir, kwargs_handlers=[ddp_kwargs])
    accelerator.init_trackers("video")
    if accelerator.is_main_process:
        accelerator.trackers[0].run.name = formatted_date + "_" + args.run_name

    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_info()
        print(f"Rank {accelerator.process_index} assigned to device {torch.cuda.current_device()}")
    else:
        transformers.utils.logging.set_verbosity_error()

    if args.seed is not None:
        set_seed(args.seed)

    if accelerator.is_main_process:
        os.makedirs(args.output_dir, exist_ok=True)

    accelerator.wait_for_everyone()
    config = DiffusionGenieConfig.from_pretrained(args.genie_config)

    train_dataset = RawFeatureDataset(args.train_data_dir, window_size=args.window_size,
                                    stride=args.stride, filter_overlaps=args.filter_overlaps,
                                    compute_stride_from_freq_table=(args.stride is None),
                                    use_actions=config.use_actions,
                                    use_raw_image_as_latent=args.use_raw_image_as_latent)

    if not args.overfit_first_batch:
        eval_dataset = RawFeatureDataset(args.val_data_dir, window_size=args.window_size,
                                       stride=args.stride, filter_overlaps=True,
                                        compute_stride_from_freq_table=(args.stride is None),
                                       use_actions=config.use_actions,
                                       use_raw_image_as_latent=args.use_raw_image_as_latent)

    else:
        train_dataset.valid_start_inds = train_dataset.valid_start_inds[:args.per_device_train_batch_size
                                                                         * args.gradient_accumulation_steps
                                                                         * accelerator.num_processes]
        eval_dataset = train_dataset

    shared_keys = ("s", "h", "w", "vocab_size", "latent_channels", "encoder_type", "encoder_name_or_path", "quantized")  # TODO: check train/val hz per dataset?
    assert all(train_dataset.metadata.get(shared_key) == eval_dataset.metadata.get(shared_key)
               for shared_key in shared_keys)

    # if "encoder_type" not in train_dataset.metadata or "encoder_name_or_path" not in train_dataset.metadata:
    #     accelerator.print("Assuming MAGVIT image encoder.")
    #     train_dataset.metadata["encoder_type"] = "magvit"
    #     train_dataset.metadata["encoder_name_or_path"] = "data/magvit2.ckpt"

    # Will not store key in metadata if it's missing, so that defaults can be filled by functions later?  # TODO: don't think we are handling missing keys in function calls
    shared_metadata = {shared_key: train_dataset.metadata[shared_key]
                       for shared_key in shared_keys if shared_key in train_dataset.metadata}

    if args.llama_config is not None:
        raise NotImplementedError("Have not factorized Llama vocabulary.")

    else:
        config.use_mup = args.mu_transfer  # Note: changing this may affect pre-trained model due to attn scaling
        config.image_vocab_size = shared_metadata["vocab_size"]
        config.T = args.window_size
        config.S = shared_metadata["h"] * shared_metadata["w"]  # TODO: make STMaskGIT use h and w instead of S
        config.vae_embed_dim = shared_metadata["latent_channels"]
        model = STMAR(config)

        if config.use_actions:
            print(f"Initializing action projectors with {train_dataset.n_action}d action")
            model.init_action_projectors([args.domain], [train_dataset.n_action], [train_dataset.action_stat], config.action_network)

        if args.mu_transfer:
            model.set_mup_shapes(rescale_params=True)
            model.init_weights()  # might be unnecessary if `rescale_params` is True

    # Optimizer. Split weights in two groups, one with weight decay and the other not.
    no_decay = ["bias", "layer_norm.weight"]
    optimizer_grouped_parameters = [
        {
            "params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
            "weight_decay": args.weight_decay,
        },
        {
            "params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
            "weight_decay": 0.0,
        },
    ]

    opt_class = mup.MuAdamW if args.mu_transfer else torch.optim.AdamW
    # scale base learning rate
    effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps \
                           * accelerator.num_processes
    args.learning_rate = args.learning_rate * min(max(1, effective_batch_size / 64), 8)

    optimizer = opt_class(optimizer_grouped_parameters, lr=args.learning_rate,
                          betas=(args.adam_beta_1, args.adam_beta_2), eps=args.adam_eps)

    # DataLoaders creation:
    collate_fn = default_data_collator if args.llama_config is not None else get_maskgit_collator_feature(config)
    train_dataloader = DataLoader(
        train_dataset, shuffle=True, collate_fn=collate_fn,
        batch_size=args.per_device_train_batch_size, num_workers=4, pin_memory=True,
    )

    # Shuffle eval dataset and then set shuffle=False on the dataloader.
    # Shuffling in the dataloader results in reshuffling with each iteration.
    eval_dataset.valid_start_inds = torch.tensor(eval_dataset.valid_start_inds)[
        torch.randperm(len(eval_dataset), generator=torch.Generator().manual_seed(0))
    ].tolist()

    eval_dataloader = DataLoader(
        eval_dataset, shuffle=False, collate_fn=collate_fn,
        batch_size=args.per_device_eval_batch_size, pin_memory=True, num_workers=4,
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    if args.lr_scheduler_type == "custom_cosine":  # decay to `end_ratio` of the peak learning rate
        def get_lr_wrapper(warmup_steps, max_steps, end_ratio=0.1):
            def get_lr(step):
                if step < warmup_steps:
                    return (step + 1) / warmup_steps

                remaining_steps = max_steps - warmup_steps
                return ((1 + math.cos(math.pi * (step - warmup_steps) / remaining_steps)) / 2) \
                    * (1 - end_ratio) + end_ratio
            return get_lr

        lr_scheduler = torch.optim.lr_scheduler.LambdaLR(
            optimizer, get_lr_wrapper(args.num_warmup_steps * accelerator.num_processes,
                                      args.max_train_steps if overrode_max_train_steps
                                      else args.max_train_steps * accelerator.num_processes)
        )
    else:
        lr_scheduler = get_scheduler(
            name=args.lr_scheduler_type,
            optimizer=optimizer,
            num_warmup_steps=args.num_warmup_steps * accelerator.num_processes,
            num_training_steps=args.max_train_steps
            if overrode_max_train_steps
            else args.max_train_steps * accelerator.num_processes,
        )

    # Enable gradient checkpointing to save memory
    if args.gradient_checkpointing:
        logger.info("Enabling gradient checkpointing")
        model.gradient_checkpointing_enable()
        model.config.use_cache = False # incompatible with grad checkpointing

    # Prepare everything with our `accelerator`.
    model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
    )

    if not args.no_compile:
        torch._dynamo.config.cache_size_limit = 256
        torch._dynamo.config.optimize_ddp = False  # https://github.com/pytorch/pytorch/issues/104674
        # TODO: https://github.com/pytorch/pytorch/issues/109774#issuecomment-2046633776
        model = torch.compile(model)

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch

    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # Figure out how many steps we should save the Accelerator states
    checkpointing_steps = args.checkpointing_steps
    if checkpointing_steps is not None and checkpointing_steps.isdigit():
        checkpointing_steps = int(checkpointing_steps)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initialize automatically on the main process.
    experiment_config = vars(args) | vars(config)

    seq_len = shared_metadata["h"] * shared_metadata["w"] * args.window_size
    effective_batch_size = args.per_device_train_batch_size * args.gradient_accumulation_steps \
                           * accelerator.num_processes
    args.num_datasets = 1
    model_module = model.module if hasattr(model, "module") else model

    experiment_config.update(shared_metadata | {
        "model_parameters": sum(p.numel() for p in model.parameters()),
        "model_parameters_M": round(sum(p.numel() for p in model.parameters()) / 1e6),
        "trunk_parameters": sum(p.numel() for p in model_module.decoder.parameters()),
        "trunk_parameters_M": round(sum(p.numel() for p in model_module.decoder.parameters()) / 1e6),
        "seq_len": seq_len,
        # "hz": "HARDCODED_2",
        "train_data_tokens": len(train_dataset) * seq_len, # only one epoch
        "effective_batch_size": effective_batch_size,
        "effective_batch_size_tokens": effective_batch_size * seq_len,
        "mixed_precision": accelerator.mixed_precision,
        "num_datasets": 1
    })

    print("============================")
    print(f"model parameters: {experiment_config['model_parameters_M']}M")
    print("============================")

    experiment_config["FLOPs_per_update_step"] = 6 * experiment_config["model_parameters"] \
                                                 * experiment_config["effective_batch_size_tokens"]

    accelerator.init_trackers(project_name="video", config=experiment_config)
    train(accelerator, model, optimizer, lr_scheduler, train_dataloader, eval_dataloader, experiment_config, config, args)

if __name__ == "__main__":
    main()