import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from cliport.models.resnet import IdentityBlock, ConvBlock from cliport.models.core.unet import Up from cliport.models.rn50_bert_lingunet import RN50BertLingUNet class RN50BertUNet(RN50BertLingUNet): """ ImageNet RN50 & Bert with U-Net skip connections without language""" def __init__(self, input_shape, output_dim, cfg, device, preprocess): super().__init__(input_shape, output_dim, cfg, device, preprocess) def _build_decoder(self): self.conv1 = nn.Sequential( nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(True) ) self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear) self.up2 = Up(1024, 512 // self.up_factor, self.bilinear) self.up3 = Up(512, 256 // self.up_factor, self.bilinear) self.layer1 = nn.Sequential( ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer2 = nn.Sequential( ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer3 = nn.Sequential( ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.conv2 = nn.Sequential( nn.Conv2d(16, self.output_dim, kernel_size=1) ) def forward(self, x): x = self.preprocess(x, dist='clip') in_type = x.dtype in_shape = x.shape x = x[:,:3] # select RGB x, im = self.encode_image(x) x = x.to(in_type) x = self.conv1(x) x = self.up1(x, im[-2]) x = self.up2(x, im[-3]) x = self.up3(x, im[-4]) for layer in [self.layer1, self.layer2, self.layer3, self.conv2]: x = layer(x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') return x