import torch import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from cliport.models.resnet import IdentityBlock, ConvBlock from cliport.models.core.unet import Up from cliport.models.core.clip import build_model, load_clip, tokenize from cliport.models.core import fusion from cliport.models.core.fusion import FusionConvLat class CLIPLingUNetLat(nn.Module): """ CLIP RN50 with U-Net skip connections and lateral connections """ def __init__(self, input_shape, output_dim, cfg, device, preprocess): super(CLIPLingUNetLat, self).__init__() self.input_shape = input_shape self.output_dim = output_dim self.input_dim = 2048 # penultimate layer channel-size of CLIP-RN50 self.cfg = cfg self.device = device self.batchnorm = self.cfg['train']['batchnorm'] self.lang_fusion_type = self.cfg['train']['lang_fusion_type'] self.bilinear = True self.up_factor = 2 if self.bilinear else 1 self.preprocess = preprocess self._load_clip() self._build_decoder() def _load_clip(self): model, _ = load_clip("RN50", device=self.device) self.clip_rn50 = build_model(model.state_dict()).to(self.device) del model def _build_decoder(self): # language self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2) self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4) self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8) self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024 self.lang_proj1 = nn.Linear(self.proj_input_dim, 1024) self.lang_proj2 = nn.Linear(self.proj_input_dim, 512) self.lang_proj3 = nn.Linear(self.proj_input_dim, 256) # vision # self.conv1 = nn.Sequential( # nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), # nn.ReLU(True) # ) # self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear) # self.lat_fusion1 = FusionConvLat(input_dim=1024+512, output_dim=512) # self.up2 = Up(1024, 512 // self.up_factor, self.bilinear) # self.lat_fusion2 = FusionConvLat(input_dim=512+256, output_dim=256) self.conv1 = nn.Sequential( nn.Conv2d(self.input_dim, 256, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(True) ) self.up3 = Up(512, 256 // self.up_factor, self.bilinear) self.lat_fusion3 = FusionConvLat(input_dim=256+128, output_dim=128) self.layer1 = nn.Sequential( ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.lat_fusion4 = FusionConvLat(input_dim=128+64, output_dim=64) self.layer2 = nn.Sequential( ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.lat_fusion5 = FusionConvLat(input_dim=64+32, output_dim=32) self.layer3 = nn.Sequential( ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.lat_fusion6 = FusionConvLat(input_dim=32+16, output_dim=16) self.conv2 = nn.Sequential( nn.Conv2d(16, self.output_dim, kernel_size=1) ) def encode_image(self, img): with torch.no_grad(): img_encoding, img_im = self.clip_rn50.visual.prepool_im(img) return img_encoding, img_im def encode_text(self, x): with torch.no_grad(): tokens = tokenize(x).to(self.device) text_feat, text_emb = self.clip_rn50.encode_text_with_embeddings(tokens) text_mask = torch.where(tokens==0, tokens, 1) # [1, max_token_len] return text_feat, text_emb, text_mask def forward(self, x, lat, l): x = self.preprocess(x, dist='clip') in_type = x.dtype in_shape = x.shape x = x[:,:3] # select RGB x, im = self.encode_image(x) x = x.to(in_type) l_enc, l_emb, l_mask = self.encode_text(l) l_input = l_emb if 'word' in self.lang_fusion_type else l_enc l_input = l_input.to(dtype=x.dtype) assert x.shape[1] == self.input_dim x = self.conv1(x) # x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1) # x = self.up1(x, im[-2]) # x = self.lat_fusion1(x, lat[-6]) # x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2) # x = self.up2(x, im[-3]) # x = self.lat_fusion2(x, lat[-5]) if (x.shape[0] > 8) and ((x.shape[0] % 36) == 0): l_input = l_input.repeat_interleave(36, dim=0) x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3) x = self.up3(x, im[-4]) x = self.lat_fusion3(x, lat[-4]) x = self.layer1(x) x = self.lat_fusion4(x, lat[-3]) x = self.layer2(x) x = self.lat_fusion5(x, lat[-2]) x = self.layer3(x) x = self.lat_fusion6(x, lat[-1]) x = self.conv2(x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') return x