import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from cliport.models.resnet import IdentityBlock, ConvBlock from cliport.models.core.unet import Up from cliport.models.core import fusion from cliport.models.clip_lingunet_lat import CLIPLingUNetLat class CLIPLing(CLIPLingUNetLat): """ CLIP RN50 with U-Net skip connections """ def __init__(self, input_shape, output_dim, cfg, device, preprocess): super().__init__(input_shape, output_dim, cfg, device, preprocess) # def _build_decoder(self): # # language # self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2) # self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4) # self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8) # self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024 # self.lang_proj1 = nn.Linear(self.proj_input_dim, 1024) # self.lang_proj2 = nn.Linear(self.proj_input_dim, 512) # self.lang_proj3 = nn.Linear(self.proj_input_dim, 256) # # vision # self.conv1 = nn.Sequential( # nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), # nn.ReLU(True) # ) # self.up1 = Up(2048, 1024 // self.up_factor, self.bilinear) # self.up2 = Up(1024, 512 // self.up_factor, self.bilinear) # self.up3 = Up(512, 256 // self.up_factor, self.bilinear) # self.layer1 = nn.Sequential( # ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), # IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), # nn.UpsamplingBilinear2d(scale_factor=2), # ) # self.layer2 = nn.Sequential( # ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), # IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), # nn.UpsamplingBilinear2d(scale_factor=2), # ) # self.layer3 = nn.Sequential( # ConvBlock(32, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), # IdentityBlock(16, [16, 16, 16], kernel_size=3, stride=1, batchnorm=self.batchnorm), # nn.UpsamplingBilinear2d(scale_factor=2), # ) del self.lang_fuser2, self.lang_fuser1, self.lang_proj1, self.lang_proj2, self.layer2, self.layer1, self.layer3 self.conv2 = nn.Sequential( nn.Conv2d(128, self.output_dim, kernel_size=1) ) def forward(self, x, lat, l): x = self.preprocess(x, dist='clip') in_type = x.dtype in_shape = x.shape x = x[:,:3] # select RGB x, im = self.encode_image(x) x = x.to(in_type) l_enc, l_emb, l_mask = self.encode_text(l) l_input = l_emb if 'word' in self.lang_fusion_type else l_enc l_input = l_input.to(dtype=x.dtype) assert x.shape[1] == self.input_dim x = self.conv1(x) # x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1) # x = self.up1(x, im[-2]) # x = self.lat_fusion1(x, lat[-6]) # x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2) # x = self.up2(x, im[-3]) # x = self.lat_fusion2(x, lat[-5]) x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3) x = self.up3(x, im[-4]) x = self.lat_fusion3(x, lat[1]) x = self.conv2(x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') return x