import torch import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from cliport.models.resnet import ConvBlock, IdentityBlock class ResNet45_10s_origin(nn.Module): def __init__(self, input_shape, output_dim, cfg, device, preprocess): super(ResNet45_10s_origin, self).__init__() self.input_shape = input_shape self.input_dim = input_shape[-1] self.output_dim = output_dim self.cfg = cfg self.device = device self.batchnorm = self.cfg['train']['batchnorm'] self.preprocess = preprocess self._make_layers() def _make_layers(self): # conv1 self.conv1 = nn.Sequential( nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1), nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(), nn.ReLU(True), ) # fcn self.layer1 = nn.Sequential( ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) self.layer2 = nn.Sequential( ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) self.layer3 = nn.Sequential( ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) self.layer4 = nn.Sequential( ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) self.layer5 = nn.Sequential( ConvBlock(512, [1024, 1024, 1024], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(1024, [1024, 1024, 1024], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) # head self.layer6 = nn.Sequential( ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer7 = nn.Sequential( ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer8 = nn.Sequential( ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer9 = nn.Sequential( ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.layer10 = nn.Sequential( ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) # conv2 self.conv2 = nn.Sequential( ConvBlock(32, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm), IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm) ) def forward(self, x): x = self.preprocess(x, dist='transporter') in_shape = x.shape # encoder for layer in [self.conv1, self.layer1, self.layer2, self.layer3, self.layer4, self.layer5]: x = layer(x) # decoder im = [] for layer in [self.layer6, self.layer7, self.layer8, self.layer9, self.layer10, self.conv2]: im.append(x) x = layer(x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') return x, im