import torch import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from transformers import DistilBertTokenizer, DistilBertModel from cliport.models.core import fusion from cliport.models.resnet import ConvBlock, IdentityBlock class ResNet43_8s_lang(nn.Module): def __init__(self, input_shape, output_dim, cfg, device, preprocess): super(ResNet43_8s_lang, self).__init__() self.input_shape = input_shape self.input_dim = input_shape[-1] self.output_dim = output_dim self.cfg = cfg self.device = device self.batchnorm = self.cfg['train']['batchnorm'] self.lang_fusion_type = self.cfg['train']['lang_fusion_type'] self.preprocess = preprocess self._make_layers() def _make_layers(self): self.conv1 = nn.Sequential( # conv1 nn.Conv2d(self.input_dim, 64, stride=1, kernel_size=3, padding=1), nn.BatchNorm2d(64) if self.batchnorm else nn.Identity(), nn.ReLU(True), # fcn ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(64, [128, 128, 128], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(128, [256, 256, 256], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(256, [512, 512, 512], kernel_size=3, stride=2, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), ) # decoders self.decoder1 = nn.Sequential( ConvBlock(512, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(256, [256, 256, 256], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.decoder2 = nn.Sequential( ConvBlock(256, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.decoder3 = nn.Sequential( ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ) self.conv2 = nn.Sequential( # conv2 ConvBlock(64, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm), IdentityBlock(self.output_dim, [16, 16, self.output_dim], kernel_size=3, stride=1, final_relu=False, batchnorm=self.batchnorm), ) self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') self.text_encoder = DistilBertModel.from_pretrained('distilbert-base-uncased') self.text_fc = nn.Linear(768, 1024) self.lang_fuser1 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 2) self.lang_fuser2 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 4) self.lang_fuser3 = fusion.names[self.lang_fusion_type](input_dim=self.input_dim // 8) self.proj_input_dim = 512 if 'word' in self.lang_fusion_type else 1024 self.lang_proj1 = nn.Linear(self.proj_input_dim, 512) self.lang_proj2 = nn.Linear(self.proj_input_dim, 256) self.lang_proj3 = nn.Linear(self.proj_input_dim, 128) def encode_text(self, l): with torch.no_grad(): inputs = self.tokenizer(l, return_tensors='pt') input_ids, attention_mask = inputs['input_ids'].to(self.device), inputs['attention_mask'].to(self.device) text_embeddings = self.text_encoder(input_ids, attention_mask) text_encodings = text_embeddings.last_hidden_state.mean(1) text_feat = self.text_fc(text_encodings) text_mask = torch.ones_like(input_ids) # [1, max_token_len] return text_feat, text_embeddings.last_hidden_state, text_mask def forward(self, x, l): x = self.preprocess(x, dist='transporter') # encode language l_enc, l_emb, l_mask = self.encode_text(l) l_input = l_emb if 'word' in self.lang_fusion_type else l_enc l_input = l_input.to(dtype=x.dtype) x = self.conv1(x) x = self.lang_fuser1(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj1) x = self.decoder1(x) x = self.lang_fuser2(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj2) x = self.decoder2(x) x = self.lang_fuser3(x, l_input, x2_mask=l_mask, x2_proj=self.lang_proj3) x = self.decoder3(x) out = self.conv2(x) return out