import torch.nn as nn import torch.nn.functional as F import cliport.utils.utils as utils from cliport.models.resnet import IdentityBlock, ConvBlock from cliport.models.clip_lingunet_lat import CLIPLingUNetLat class CLIPWithoutSkipConnections(CLIPLingUNetLat): """ CLIP RN50 with decoders (no skip connections) """ def __init__(self, input_shape, output_dim, cfg, device, preprocess): super().__init__(input_shape, output_dim, cfg, device, preprocess) def _build_decoder(self): self.layers = nn.Sequential( # conv1 nn.Conv2d(self.input_dim, 1024, kernel_size=3, stride=1, padding=1, bias=False), nn.ReLU(True), nn.UpsamplingBilinear2d(scale_factor=2), # decoder blocks ConvBlock(1024, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(512, [512, 512, 512], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ConvBlock(512, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(128, [128, 128, 128], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ConvBlock(128, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(64, [64, 64, 64], kernel_size=3, stride=1, batchnorm=self.batchnorm), nn.UpsamplingBilinear2d(scale_factor=2), ConvBlock(64, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), ConvBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), IdentityBlock(32, [32, 32, 32], kernel_size=3, stride=1, batchnorm=self.batchnorm), # conv2 nn.UpsamplingBilinear2d(scale_factor=2), nn.Conv2d(32, self.output_dim, kernel_size=1) ) def forward(self, x): x = self.preprocess(x, dist='clip') in_type = x.dtype in_shape = x.shape x = x[:,:3] # select RGB x, _ = self.encode_image(x) x = x.to(in_type) assert x.shape[1] == self.input_dim x = self.layers(x) x = F.interpolate(x, size=(in_shape[-2], in_shape[-1]), mode='bilinear') return x